Intelligent Control of Fuel Cell Distributed Generation Systems

A. Hajizadeh, M.A. Golkar

Abstract—This paper presents modeling, controller design, and simulation study of a Solid Oxide Fuel Cell (SOFC) distributed generation (DG) system. The overall configuration of the SOFC DG system is given, dynamic models for the SOFC power plant and its power electronic interfacing are briefly described, and controller design methodologies for the power conditioning units to control the power flow from the fuel cell power plant to the utility grid are presented. A MATLAB/Simulink simulation model is developed for the SOFC DG system by combining the individual component models and the controllers designed for the power conditioning units. Simulation results are given to show the overall system performance including active power control and voltage regulation capability of the distribution system.

Index Terms— Distributed Generation, Intelligent Control, Fuel Cell, Active power, Power Quality

I. INTRODUCTION

DISTRIBUTED Generation (DG) systems, powered by microsources such as fuel cells, photovoltaic cells, and microturbines, have been gaining popularity among the industry and utilities due to their higher operating efficiencies, improved reliabilities, and lower emission levels. The introduction of DG to the distribution system has a significant impact on the flow of power and voltage conditions at the customers and utility equipment [1]-[2]. These impacts might be positive or negative depending on the distribution system operating characteristics and the DG characteristics. Positive impacts include, voltage support and improved power quality, diversification of power sources, Reduction in transmission and distribution losses, transmission and distribution capacity release and improved reliability. Among the distributed generators, fuel cells are attractive because they are modular, efficient, and environmentally friendly [3]. Fuel Cell DG (FCDG) systems can be strategically placed at any site in a power system (normally at the distribution level) for grid reinforcement, thereby deferring or eliminating the need for system upgrades and improving system integrity, reliability, and efficiency. Therefore, proper controllers need to be designed for a FCDG system to make its performance characteristics as desired [4]-[5]. Stevandic J. Jiang [6] develop a standalone, reduced-order, dynamic model of fuel cell power plant connected to a distribution grid via dc/ac converter. Sedghisigarchi and Feliachi [7] proposed a model includes the electrochemical and thermal aspects of chemical reactions inside the fuel-cell stack (i.e., temperature and chemical species dynamics are considered) but the dynamics model of DC/DC and DC/AC Converters are not considered. In [8] a novel hierarchical control architecture for a hybrid distributed generation system that consists of dynamic models of a battery bank, a solid oxide fuel cell and power electronic converters has been presented. But in this paper the voltage regulation capability and reactive power control of FCDG have not been addressed. So it is important to develop a proper modeling of FCDG system and design suitable control strategies for all components to attain good performances such as optimal operation of fuel cell stack and power quality improvement. Hence, in this paper the intelligent control structure has been developed for a FCDG system with active power management and reactive power control capability. The fuel cell power plant is interfaced with the utility grid via boost dc/dc converters and a three-phase pulse width modulation (PWM) inverter. A validated SOFC dynamic model, reported in [9], is used in this paper. The models for the boost dc/dc converter and the three-phase inverter together are also addressed. The controller design methodologies for the dc/dc converters and the three-phase inverter are also presented for the proposed fuel cell DG system. Based on the individual component models developed and the controllers designed, a simulation model of the SOFCFC DG system has been built in MATLAB/Simulink environment. Simulation results show that the active power control and voltage sag mitigation by FCDG system.

II. DYNAMIC MODELING OF FUEL CELL DISTRIBUTED GENERATION SYSTEMS

The dynamic modeling of a Fuel Cell Distributed Generation (FCDG) system is an important issue that needs to be carefully addressed. To study the performance characteristics of FCDG systems, accurate models of fuel cells are needed. Moreover, models for the interfacing power electronic circuits in a FCDG system are also needed to design controllers for the overall system to improve its
performance and to meet certain operation requirements [10]. To meet the system operational requirements, a FCDG system needs to be interfaced through a set of power electronic devices. Fig. 1 shows the block diagram of the FCDG system proposed in this paper that connected to main grid in Point Common Coupling (PCC). The electric components of the FCDG system used in this paper comprise a battery, DC/DC and DC/AC converters, while the electrochemical component is a Solid Oxide Fuel Cell system (SOFC). The mathematical models describing the dynamic behavior of each of these components are given below.

A. Fuel Cell Model

Fuel cells are static energy conversion devices that convert the chemical energy of fuel directly into electrical energy. They show great promise to be an important DG source of the future due to their many advantages, such as high efficiency, zero or low emission (of pollutant gases), and flexible modular structure. The model of SOFC power plant used in this study is based on the dynamic SOFC stack model developed and validated in [9]. The performance of FCs is affected by several operating variables, as discussed in the following. Decreasing the current density increases the cell voltage, thereby increasing the FC efficiency. One of important operating variable is the reactant utilization, \(U_f \), referring to the fraction of the total fuel (or oxidant) introduced into a FC that reacts electrochemically:

\[
U_f = \frac{q_{\text{in}} - q_{\text{out}}}{q_{\text{in}}} = \frac{q_{\text{in}}^{\text{H}_2}}{q_{\text{in}}^{\text{H}_2}}
\]

Where \(q_{\text{in}}^{\text{H}_2} \) is the hydrogen molar flow. High utilizations are considered desirable (particularly in smaller systems) because they minimize the required fuel and oxidant flow, for a minimum fuel cost and compressor load and size. However, utilizations that are pushed too high result in significant voltage drops. The SOFC consists of hundreds of cells connected in series and parallel. Fuel and air are passed through the cells. By regulating the level, the amount of fuel fed into the fuel cell stacks is adjusted, and the output real power of the fuel cell system is controlled. The Nernst’s equation and Ohm’s law determine the average voltage magnitude of the fuel cell stack [11]. The following equations model the voltage of the fuel cell stack:

\[
V_{fc} = N_0 (E_0 + \frac{RT}{2F} (\ln \frac{P_{H_2} P_{O_2}^{0.5}}{P_{H_2} P_{O_2}})) - r I_f
\]

where:

- \(N_0 \) is the number of cells connected in series;
- \(E_0 \) is voltage associated with the reaction free energy;
- \(R \) is the universal gas constant;
- \(T \) is the temperature;
- \(I_f \) is the current of the fuel cell stack;
- \(F \) is the Faraday's constant.

\(P_{H_2}, P_{H_2O}, P_{O2} \) are determined by the following differential equations:

\[
P_{H_2} = -\frac{1}{t_{H_2}^{I}}(P_{H_2} + \frac{1}{K_{H_2}^{I}}(q_{\text{in}}^{\text{H}_2} - 2K_{f} I_f))
\]

\[
P_{H_2O} = -\frac{1}{t_{H_2O}^{I}}(P_{H_2O} + \frac{2}{K_{H_2}^{I}}K_{f} I_f))
\]

\[
P_{O_2} = -\frac{1}{t_{O_2}^{I}}(P_{O_2} + \frac{1}{K_{O_2}^{I}}(q_{\text{in}}^{\text{O}_2} - K_{f} I_f))
\]

Where, \(q_{\text{in}}^{\text{H}_2} \) and \(q_{\text{in}}^{\text{O}_2} \) are the molar flow of hydrogen and oxygen and where the Kr constant is defined by the relation between the rate of reactant hydrogen and the fuel cell current

\[
q_{\text{in}}^{\text{H}_2} = \frac{N_0 I_f}{2F} = 2K_{f} I_f
\]

B. DC/DC Converter Model

To connect a fuel cell to an external power system, it is necessary to boost the fuel cell voltage or to increase the number of cells. The role of the DC/DC booster converter is to increase the fuel cell voltage, to control the fuel cell power, and to regulate the voltage. Fig. 2 shows the DC/DC converter model. This boost converter is described by the following two non-linear state space averaged equations [12]:

\[
\rho X_1 = \frac{(1-d)}{L} X_2 + \frac{d}{LU}
\]

\[
\rho X_2 = -\frac{(1-d)}{C} \frac{X_2}{RC}
\]

Where ‘‘d’’ is the on time of the switching device, ‘‘U’’ is the input voltage, ‘‘X_1’’ is the inductor current and ‘‘X_2’’ is the output voltage.
C. DC/AC Converter Model

Far the mostly used converter nowadays is the Voltage Source Converter (VSC). The power rating of most DG units is not higher than a few MW. So most VSC’s will be based on IGBT switches. The action of the power electronics devices in such an inverter is much faster than the mechanical valve. Thus, for fast response, DC/AC inverter is the first choice. A dynamic model of voltage source inverter has been developed. A three-phase equivalent circuit of DC/AC converter is shown in Fig. 3. To reduce these harmonics, filters are connected between the converter and the grid. A first-order filter, represented by the Ls and the Rs in Fig. 3, is used. In Fig. 4, vsa, vsb, vsc are the three-phase AC voltage outputs of the inverter, and ia, ib, ic are the three-phase AC current outputs of the inverter. The bus of active power drawn from the DG source. This link can main function of the shunt connection is to control the amount

\[
\frac{di_k}{dt} = -\frac{R_s}{L_s}i_k + \frac{1}{L_s}(v_{sk} - v_{sk})
\]

(6)

Where k = {a, b, c}.

To develop the dynamic model, the state equations (6) are transformed to the system synchronous reference frame as:

\[
\begin{align*}
\frac{dv_q}{dt} &= -\frac{R_s}{L_s}v_q - \frac{\omega_s}{L_s}i_q + \frac{\omega_s}{L_s}\sin(\delta + \theta_s)V_{dc} - \frac{\omega_s}{L_s}\sin(\theta_s)V_{dc} \\
\frac{dv_d}{dt} &= -\frac{R_s}{L_s}v_d + \frac{\omega_s}{L_s}i_d + \frac{\omega_s}{L_s}\cos(\delta + \theta_s)V_{dc} - \frac{\omega_s}{L_s}\cos(\theta_s)V_{dc}
\end{align*}
\]

(7)

III. CONTROL STRATEGY FOR FCDG SYSTEM

There is a high demand for utility DG installations due to their advantages of deferment or upgrading the distribution infrastructure. Most DG units are connected to the distribution system through a shunt nonlinear link such as a Voltage Source Inverter (VSI) or a Current Source Inverter (CSI). The main function of the shunt connection is to control the amount of active power drawn from the DG source. This link can emulate DSTATCOM devices by controlling the reactive power, as well as the active power. Hence, it is necessary to design a control structure to manage active power and reactive power simultaneously. Moreover, the control strategy must be designed to mitigate different power quality problems. Also, the suitable control is presented to regulate the input fuel flow in order to meet a desirable output active power demand and to prevent transient conditions in fuel cell stack. The control structure that has been proposed in this paper has been shown in Fig. 4. As shown, this structure has been composed of different local units. Using of distributed fuzzy logic controllers in this structure makes that it has adaptive properties in distribution systems [14]. Fuzzy control is a practical alternative for a variety of challenging control applications since it provides a convenient method for constructing nonlinear controllers via the use of heuristic information. A fuzzy logic controller used in this research consists of the rule base, fuzzification, inference engine, and defuzzification. The rule base collects the control rules which describe experts’ knowledge and experience in the fuzzy set. In the fuzzification process, the numerical inputs are converted into linguistic fuzzy values. Then, from the fuzzy values and the already established rule base, linguistic control values are generated in the inference engine. Because these linguistic inference results cannot be used in the actuator directly, they should be converted into numerical output again in the defuzzification process. MAX-MIN composition and the center of gravity method are used in the inference engine and defuzzification of this fuzzy logic, respectively.

A. DC/AC Converter Controller

Power quality has attracted considerable attention from both utilities and users due to the use of many types of sensitive electronic equipment, which can be affected by harmonics, voltage sag, voltage swell, and momentary interruptions [15]. These disturbances cause problems, such as overheating, motor failures, inaccurate metering, and misoperation of protective equipment. Voltage disturbance is the common power quality problem in industrial distribution systems. The voltage disturbance mainly encompasses voltage sags, voltage swells, voltage harmonics, and voltage unbalance. The voltage disturbance notoriously affects voltage-sensitive equipment that eventually leads to malfunction. Voltage sag is one of the most severe power quality problems because of its adverse financial impact on customers. The power quality control unit, as shown in Fig. 5, has been formed of two parts, voltage processing unit and fuzzy logic controllers.

A.1 Voltage Processing Unit

This unit is based on Adaptive Linear Neuron structure (ADALINE). Recent years, with the development of artificial intelligence technique, ADALINE has been used to analyze the power quality [16]. The idea behind using the ADALINE in detection of power quality disturbances is to represent the
ADALINE as an adaptive signal predictor [17]. The input to this predictor is time-delayed samples of the signal and the output of the ADALINE is the predicted value of the signal. The ADALINE algorithm possesses a highly tracking capability. Yet when a power quality disturbance occurs, the abrupt change in the signal gives rise to the error signal generated by the ADALINE and the weight values experience variation until it settles down to the new values. Both the alterations in the error signal and the sum of the variation of the weight values can aid in the detection of power quality events. To achieve the voltage regulation task, the current i_q is assigned to the output of the FLC. The actual inputs to the fuzzy system are scaled versions of both the rms voltage error and its derivative. Seven uniformly distributed triangle membership functions are used for the fuzzification of the inputs [14]. Each of the FLC input signals and output signals are fuzzy variables and are assigned seven linguistic variables, namely, NB, NM, NS, Z, PS, PM, and PB, which stand for negative big, negative medium, negative small, zero, positive small, positive medium and, positive big, respectively. The rule base is designed so that the actual rms voltage can reach its command value as quickly as possible within the shunt compensator limitation without overshoot.

A.2 Active Power Control
A fuzzy logic controller has been designed to control active power drawn from load. The actual inputs to the fuzzy system are scaled versions of both the active power error and its derivative and the current i_d is assigned to the output of the FLC [14]. Seven uniformly distributed triangle membership functions are used for the fuzzification of the inputs. Each of the FLC input signals and output signals are fuzzy variables and are assigned seven linguistic variables, namely, NB, NM, NS, Z, PS, PM, and PB, which stand for negative big, negative medium, negative small, zero, positive small, positive medium and, positive big, respectively.

B. DC/DC Converter Controller
The unregulated output voltage of the FC is fed to the dc/dc boost converter. Being unregulated it has to be adjusted to a constant average value (regulated dc voltage) by adjusting the duty ratio to the required value. The voltage is boosted
Eq. (4) shows that the reacting fuel quantity, \(q_r \), of the fuel cell controller is to maintain optimal hydrogen meet the aforementioned usage requirements, the basic target cell voltage decreases very steeply with increasing current. To permanently damaged.

C. Fuel Cell Controller

In order to operate the fuel cell stack at an optimal fuel utilization point (approximately 85%) [18], the control algorithm should observe the following operational constraints of the fuel cell system:

Underused fuel: If the fuel utilization drops below a certain limit, the cell voltage will rise rapidly.

Overused fuel: If the fuel utilization increases beyond a certain value, the cells may suffer from fuel starvation and be permanently damaged.

Under voltage: The fuel cell characteristic poses a lower cell voltage limit of approximately 0.5 V, beyond which the cell voltage decreases very steeply with increasing current. To meet the aforementioned usage requirements, the basic target of the fuel cell controller is to maintain optimal hydrogen utilization, \(U_{f, opt} \), around 85%.

Eq. (4) shows that the reacting fuel quantity, \(q_r \), is directly proportional to the output current, \(I \), the factor \(K_r \) being a cell constant.

Hence, the desired utilization is translated to corresponding output current demand:

\[
q^{in}_{H_2} = \frac{2K_r}{U_{f, opt}} I_{demand} \Rightarrow I_{demand} = \frac{U_{f, opt}}{2K_r} q^{in}_{H_2}
\] (8)

A typical range of \(U_f \) is 80-90% ([18]), which ensures that the operational limits mentioned above are observed. The corresponding limitation for the demand current is then

\[
\frac{0.8q^{in}_{H_2}}{2K_r} = I_{fc, min} \leq I_{fc, ref} \leq I_{fc, max} = \frac{0.9q^{in}_{H_2}}{2K_r}
\] (9)

Under these conditions, the cell output power is directly related to its fuel consumption at the selected optimum operating point of the V-I characteristic. Operating the fuel cell at different output power levels requires suitable variation of its input fuel flow rate, to be realized by the overall control system of the fuel cell. The power demand requirement of the fuel cell is translated into a current demand input by dividing with the stack output voltage:

\[
I_{demand} = \frac{P_{demand}}{V_{fc}}
\] (10)

To overcome the transient conditions in fuel cell, a fuzzy logic controller has been designed. The actual inputs to the fuzzy system are scaled versions of both the fuel cell current error and its derivative and the hydrogen molar flow \(q_{H_2, ref} \) is assigned to the output of the FLC [14]. Seven uniformly distributed triangle membership functions are used for the fuzzification of the inputs. Each of the FLC input signals and output signals are fuzzy variables and are assigned three linguistic variables, namely, S, M, L, N, Z and P, which stand for small, medium, large, negative, zero, positive respectively. However, for preventing transient condition on output voltage of fuel cell, the rule based of FLC must be designed correctly. The control structure for fuel cell system has been shown in Fig. 6.

IV. SIMULATION RESULTS

The performance of the proposed structure is assessed by a computer simulation that uses MATLAB Software. The parameters of the system under study are given in Table I. The study case is dedicated to test the dynamic performance of the proposed structure. A voltage sag will be used to examine the dynamical performance of the algorithm. It is assumed that the three phase voltages were balanced until a disturbance has occurred in the system at 0.25 second. The disturbance causes a voltage sag in the three voltages, as shown in Fig. 7. Before the disturbance, the system was balanced and, therefore, the negative component vanishes. The voltage at the PCC is equal to 1.0 pu during normal operation. At \(t=0.05 \) sec, the distributed energy source is switched on to correct the voltage...
profile. At 0.25 second, the voltage sag is initiated and the proposed algorithm succeeds to detect the disturbance in less than half of a cycle. The signal of voltage that predicted by ADALINE structure, has been presented in Fig. 8. As shown in Fig. 8, The ADALINE algorithm possesses a highly tracking capability. Fig. 9 demonstrates that the proposed control structure based Fuzzy Logic Control succeeds in regulating the PCC voltage at 1.0 pu, even when the load disturbance occurs at 0.25ses and 0.5s with fast dynamics and minimum overshoot. This result examines the disturbance rejection capabilities of the proposed FLC. It quickly returns the voltage at the PCC to its setting value. Fig. 10(a) indicates that the active power supplied from the DER is almost constant, and is equal to its input command value (1pu) from the control circuit. Finally, Fig. 10(b) shows the injected reactive power from the distributed energy sources to compensate for the voltage. It is clear from figures 10(a) and 10(b) that the control of the active and reactive power is independent of the other. Fig. 11 shows the output voltage changes of fuel cell. As depicted in this figure, the voltage rises when the voltage sag occurs.

V. CONCLUSION
Modeling, control, and simulation study of a SOFC DG system is investigated in this paper. A validated SOFC dynamic model is used to model the fuel cell power plant. The state space models for the boost dc/dc converter and the three-phase inverter are also discussed. Then by designing proper intelligent controllers the capability of FCGD for active power control and voltage disturbance mitigation has been demonstrated. The proposed control method is insensitive to the parameter variation of the distribution system, because it is adaptive in nature. This is an absolute necessity in distribution systems, since there is no dependence on the parameter of the electrical network.

TABLE I
FUEL CELL DISTRIBUTED GENERATION SYSTEM PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Voltage</td>
<td>210[V]</td>
</tr>
<tr>
<td>Rated Power</td>
<td>100[KW]</td>
</tr>
<tr>
<td>(N_b)</td>
<td>384</td>
</tr>
<tr>
<td>(K_{WI})</td>
<td>8.43e-4</td>
</tr>
<tr>
<td>(K_{w})</td>
<td>2.81e-4</td>
</tr>
<tr>
<td>(K_{Q})</td>
<td>2.52e-3</td>
</tr>
<tr>
<td>(t_{H1})</td>
<td>26.1</td>
</tr>
<tr>
<td>(t_{H2})</td>
<td>78.3</td>
</tr>
<tr>
<td>(t_{Q})</td>
<td>2.91</td>
</tr>
<tr>
<td>(r)</td>
<td>0.126</td>
</tr>
</tbody>
</table>

DC/DC Converter Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Voltage</td>
<td>200[V]/480V</td>
</tr>
<tr>
<td>Rated Power</td>
<td>100[KW]</td>
</tr>
<tr>
<td>(R) [\Omega]</td>
<td>14</td>
</tr>
<tr>
<td>(C) [mF]</td>
<td>1.5</td>
</tr>
<tr>
<td>(L) [\muH]</td>
<td>415</td>
</tr>
</tbody>
</table>

DC/AC Converter Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Voltage</td>
<td>480[V] dc/220[V] ac</td>
</tr>
<tr>
<td>Rated Power</td>
<td>100[KW]</td>
</tr>
<tr>
<td>(R_s) [\Omega]</td>
<td>0.9</td>
</tr>
<tr>
<td>(L_s) [mH]</td>
<td>0.01</td>
</tr>
<tr>
<td>(V_s) [Volt]</td>
<td>220</td>
</tr>
<tr>
<td>(f_s) [Hz]</td>
<td>50</td>
</tr>
</tbody>
</table>

Fig. 7. Three-phase supply voltage during a sag

Fig. 8. Predicted Voltage Sag by ADALINE
VI. REFERENCES

VII. BIOGRAPHIES

Amin Hajizadeh
He was born in Iran in 1980; He received his B.Sc. degree in control engineering from Mashad University in Iran in 2002, M.Sc degree of power engineering from the K.N.Toosi University of technology Tehran-Iran in 2005, where he is currently pursuing the Ph.D. degree. His current research interest includes intelligent control of distributed energy resources and optimization of hybrid power systems and distributed generation.

Masood Ali Akbar Golkar
He was born in Tehran Iran in 1954. He received his BSc degree in control engineering from Sharif University of Technology Tehran-Iran in 1977, MSc from The Oklahoma State University USA in 1979 and his PhD degree from the Imperial College of Science, Technology, and Medicine (The University of London, UK) in 1986, all in Electrical Engineering (Power Systems). His employment experience included working as an Associate Professor at The K N Toosi University, Tehran, Advisor to Tehran Electricity Board, Head of research group at Electric Power Research Center in Tehran. Now he is an Associate Professor at K N Toosi University of Technology in Tehran, Iran.