
 

  
Abstract: - This paper presents an ANN based method for on-

line voltage stability assessment of power systems. The most 
vulnerable load buses of the system from voltage stability point of 
view have been identified by Modal analysis. A separate feed 
forward type of ANN is trained for each vulnerable load bus. For 
each of these ANN’s, some novel inputs, comprising of the 
moments obtained by multiplying the real power and reactive 
power contributions with the electrical distance between each 
generator-vulnerable load bus pair and the reactive power 
margins available at the generators, are used in addition to the 
usually used inputs viz. the real and reactive power loads and the 
voltage magnitude at the vulnerable load bus. The target output 
for each input pattern is obtained by computing the distance to 
voltage collapse from the current system operating point using a 
continuation power flow type algorithm (Contour Program) 
incorporating the Q limits of the generators. The proposed 
method has been applied to the IEEE 30 bus test system. The 
distances to voltage collapse obtained by the ANN and by the 
analytical method are found to be closely matching with each 
other. 

Index Terms: - Real Time Monitoring, Voltage Stability, 
Artificial Neural Network, 

I.  INTRODUCTION 
ower system voltage instability problem has been a 
growing problem since the last couple of decades and is 

emerging as a dominant threat for secure and reliable 
operation of power systems. Heavy reactive power flows in 
long transmission lines and inadequate reactive power 
compensation at major load buses are the main causes of 
voltage instability [1]. In the restructured modern power 
systems, system operators are many times forced to exploit the 
existing capacity of the network by incorporating a large 
number of FACTs devices in the system. Sometimes, in such 
situations, the actions of the automatic protective equipment 
may crash the network before the operator would get the 
indications from the alarms in place. Therefore, it is necessary 
to have a fast method to evaluate static voltage stability 
comprehensively by examining and quantifying the 
production, transmission and consumption of the reactive 
power on a system wide basis and relate this to the voltage 
stability margins at the vulnerable load buses. 

Various methods for voltage stability assessments of power 
systems have been documented in the IEEE Subcommittee 
report [2]. In the modal analysis method, it is difficult to 
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account for the discontinuities that arise in the system because 
of the reactive power sources hitting the limits. However, the 
Modal analysis based methods are useful [3] for identifying 
the most vulnerable load buses/area in the system. 

It is reported that generally the voltage instability problem 
is caused by system’s inadequacy to meet the reactive power 
demands from the available reactive power sources in the 
system. Therefore, the QV curves drawn for different real 
power loadings are preferred over PV curves for voltage 
stability analysis [4].  The reactive power loading margins, the 
distances between the nose points of the QV curves drawn for 
the different load buses and the current operating point of the 
system is considered to be the most basic and widely accepted 
Voltage Collapse Proximity Indicator (VCPI) for the voltage 
stability assessment [1]. The QV curve method has been 
addressed by Schlueter [3] for both the “Loss of Voltage 
Controlled” voltage instability (caused by inadequate reactive 
power reserves available at the various sources) and 
“Clogging” voltage instability (caused by the inadequacy of 
the reactive power transfer capability of the transmission 
systems).  

It is well known that a trained ANN is a very suitable tool 
for on-line use over the other computationally expensive 
methods. There have been some attempts to use ANN for 
online voltage stability assessment [5, 6,]. References [5] 
propose the energy function approach for voltage stability 
assessment and come out with voltage stability margin at the 
system level. In Ref. [6] the proposed ANN predicts L indices 
(which are simplified measures of maximum loadability of 
load buses) for all the load buses in a reduced order system. 
The principal objective of the present paper is to train a 
separate ANN for each of the vulnerable load buses of the 
system. We envisage that this would be an useful tool for 
continuously tracking the reactive power margins available for 
voltage instability at these buses as the system loading 
conditions (in terms of real power consumption and power 
factor variations at the various load buses) change around the 
peak load base conditions. In our opinion, Monitoring of real 
time reactive power margins will be very useful to initiate 
appropriate control actions to avoid any impending voltage 
instability situations 

When an ANN-based method is to be devised for a 
problem the first question which arises is “what are the 
different principal parameters/conditions/factors which play 
vital role in estimating/predicting the desired output of the 
ANN?”  On these considerations,  a set of novel inputs to each 
of these ANN’s consisting of (i) The real and reactive power 
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moments obtained by taking the products of the power 
contributions from the various generators to a particular 
vulnerable load bus with the electrical distances between the 
generators and the corresponding load bus, (ii) Reactive power 
margins at the generator buses, (iii) Real and reactive power 
loadings at the particular load bus and (iv) Voltage magnitude 
at that load bus has been proposed in this paper. The training 
of the ANN’s should be done with an exhaustive set of input-
output patterns covering the realistic ranges of all the 
operating points and relevant system parameters discussed 
above. The target output selected for each of the input patterns 
is the distance to voltage collapse obtained using QV curves. 
The analytical method used in the present paper for drawing 
QV curves (incorporating the reactive power limits of the 
generators) is explained in brief in sec V. 

The overall procedure involved in the design and training of 
the ANN’s may be summarized as; (i) Generation of loading 
patterns (Described in Sec II), (ii) Modal analysis for each of 
the loading patterns (Described in Sec III), (iii) Generation of 
patterns (Described in Sec IV and V) and (iv) Training of the 
ANN’s (Described in Sec. VI). 

II.  GENERATION OF LOADING PATTERNS 
Starting with the base case assumed as the system peak 

load conditions, a set of realistic system loading patterns are 
generated by the following procedure: (i) Keeping the real 
power loading of the system constant at the peak values, and 
incrementing the reactive power loads at randomly selected 
multiple load buses till the reactive power loading at these 
buses become equal to the real power loadings at these buses 
(ii) keeping the reactive power loadings at all the load buses 
constant at the peak values, the real power loadings of the 
system are reduced  in steps until the total system real power 
load becomes 90% of the system peak value. In these loadings 
the real power loading is distributed on randomly selected 
individual load buses prorata to their base case values and also 
the real power loading at any load bus is not allowed to go 
below reactive power loading at that load bus.  (iii) Both real 
and reactive power loadings at all the randomly selected load 
buses are increased simultaneously. In this set of patterns, the 
system real power load is increased from 90 % values 
generated in (ii) to the original peak level in steps 
simultaneously increasing the reactive power loading for each 
of these patterns to the same set of values as obtained in (i). 

III.  IDENTIFICATION OF VULNERABLE LOAD BUSES 
It is well known that in a strongly coupled power system, 

as the system reactive power loading is increased, some of the 
load buses only will experience more dips in their voltage 
magnitudes depending upon their relative electrical distances 
with respect to the reactive power sources. The modal analysis 
of the reduced (corresponding to the Q-V relationship) 
Jacobian matrix and computation of the bus participation 
factors [4] will be useful for identifying the few most 
vulnerable buses from the voltage stability point of view. It 
has been reported [4] that only very few smallest eigenvalues 

corresponding to weak modes will play the major role in 
deciding the voltage stability of the system. The most 
vulnerable buses are to be identified for each of the loading 
patterns generated in Sec. II by running the modal analysis 
program repeatedly.  

IV.  GENERATION OF INPUT PATTERNS FOR ANN  
Generation of input patterns for each of these ANN’s 

involves running of two computer programs, i) for computing 
the complex power contributions by each generator in meeting 
the  load requirements at the particular vulnerable load bus for 
which the ANN is designed and ii) for computing the 
electrical distance between each generator and the particular 
load bus. The procedures used in these programs are descried 
in the following sub-sections. The product of the power 
contributions and the electrical distance corresponding to each 
generator-load pair may be designated as the power-electrical 
distance moment for this pair and the real and reactive power 
moments obtained for all such pairs are to be used as inputs 
for the ANN. In addition, the real and reactive power loads, 
voltage magnitude at the particular load bus and the reactive 
power margins available at all the generator buses 
corresponding to each loading pattern are also to be used as 
the inputs for the ANN. 

A.  Computation of individual generator’s contribution to a 
load 

Many references [7-9] are available in the literature, for 
computing the individual generators’ contributions in meeting 
the loads at the various load buses in the system.  These 
algorithms are very much used in the current context of 
restructuring of modern power systems. In this paper the 
algorithm proposed by John Tang [9] has been used. This 
algorithm essentially involves converting the loads to 
equivalent shunt admittances and forming the Z-bus of the 
network including the equivalent load admittances 
corresponding to a particular system operating point in the 
matrix. The technique used is injection of current only at one 
generator at a time leaving the other generators open and 
evaluating the power contribution by this generator in meeting 
the load at the particular load bus considering the impedances 
offered by various paths between the generator and load buses.  

For the system having NL  number of total load buses and 
NG  number of total generator buses, using the above method 

the following matrix can be formed, 
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where, ,L j G iS  is the complex power contribution to load 

bus jL  by generator bus iG . 
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B.  Computation of electrical distances between generators 
and load buses 

For computing the electrical distances between a generator 
bus and a particular load bus, the Z-Bus matrix of the network 
alone (excluding the effects of the loads) is first formed and 
by considering unit current injections into the particular 
generator bus and out of the particular load bus alone leaving 
all the other generator and load buses open, the Thevenin’s 
impedance between the particular generator bus and the load 
bus is computed by elimination of all the other buses by 
adopting the Kron’s network reduction procedure [10].  

Using the above procedure, the Thevenin’s impedance, ijZ  

between the thi Generator bus and the thj  load bus will be 
nothing but the off diagonal element of the reduced Z-Bus 
matrix between these two nodes. 

C.  Computation of moments 
The contribution of complex power, to a particular load bus 

from each generator bus found using (1) is multiplied by the 

equivalent impedance ( thZ ) between the same pair of buses to 
obtain the real and reactive power moments as follows.  

, ,

, ,

r e a l

i m a g

( )
( )

i
j C O N T i j t h i j

i
j C O N T i j t h i j

P m o m S Z

Q m o m S Z

×

×

=

=
       (2)    

Where, 
1, 2, .... .Nj G=  

 1, 2, .... .Ni L=  
  ,N NG L  = Number of generator buses and number of        

vulnerable load buses respectively. 

V.  GENERATION OF THE OUTPUT PATTERNS 
The next step is to compute the target output Viz. distance 

to voltage collapse in terms of the reactive power load 
increment for the onset of voltage collapse corresponding to 
each of the input patterns (operating points) of the system, 
using a continuation load flow type analytical method. The 
analytical method used in the present paper is based on Ref. 
[11]. This reference essentially evaluates the global response 
of a power system to variations in the nodal constraints. This 
approach has the capability to calculate how any specified 
system quantity is related to any two independent node 
parameters. Such a relationship can be visualized as a surface 
in three dimensions. The contour map of this surface with 
respect to the varying parameters provides a useful two 
dimensional representation of these relationships. The 
calculation procedure of computing these contours essentially 
involves two steps i) for finding the first point on a particular 
contour in the Q-V plane at a particular vulnerable load bus 
corresponding to a particular real power load at this load bus 
as a parameter and ii) for computing the sequence of points on 
this contour by a “predictor-corrector” iterative method. These 
contours are essentially the Q-V curves obtained at a 
particular load bus starting from a particular loading condition 

(operating point) and on gradual increment of the reactive 
loading at the bus. In this procedure on a particular run of the 
contour program, while incrementing the reactive power load, 
the points at which the different generators hit their limits, one 
by one, could be identified.  Every time when a particular 
generator hits its reactive power limit it is converted to a P-Q 
bus and taking this as another base case a fresh contour 
program run is made to get a fresh Q-V nose curve. When the 
last generator bus hits its reactive power limit the 
corresponding contour obtained is taken as the final contour 
and the distance between the initial operating point 
corresponding to the particular ANN input pattern and the 
nose point on this final contour curve can be taken as the 
distance to voltage collapse for this operating point (load 
pattern). 

VI.  DESIGN AND TRAINING OF ANN’S 
The final step in the proposed voltage stability assessment 

is the design and training of a separate feed forward type of 
ANN for each of the vulnerable load buses, making use of the 
input-output patterns developed as explained in Sections IV 
and V. For each of these ANN’s, number of inputs as many as 
thrice the number of generators in the system representing the 
moments between each generator and the vulnerable load bus, 
reactive power margin available at each generator bus and 
additionally the real and reactive power loads and voltage 
magnitude at the load bus, {thus the number of inputs to ANN 
totaling to (3* Number of Generators + 3)}, have been used at 
the input layer. A single neuron at the output layer 
representing the target output Viz. distance to voltage collapse 
for each pattern, obtained by successive running of the contour 
program (as described in Section V), has been used. By 
systematically trying various transfer functions in the different 
layers, the number of hidden layers and the number of neurons 
in the hidden layer, a suitable architecture of the ANN could 
be obtained for a particular system. For training the ANN, the 
Levenberg-Marquardt optimization procedure available in the 
MATLAB toolbox has been utilized [12]. 

VII.  TEST SYSTEM AND RESULTS 
The proposed method of voltage stability assessment in the 

present paper has been applied to the IEEE 30 bus test system. 
The data pertaining to this test system are given in Ref. [13]. 
This system comprises of 6 generators and 41 lines. 

For this system, 500 different loading patterns were 
generated for each of the conditions explained in SEC II (i), 
(ii) and (iii). The total number of loading patterns generated is 
1500. The quantum and location of reactive power load 
increments and real power load decrements (with respect to 
the peak real power loading conditions) on randomly selected 
multiple number of load buses have been done to generate all 
the loading patterns by running random number generation 
program repeatedly. 

For each of these loading patterns, the modal analysis 
program has been run to identify the most vulnerable few load 
buses from the voltage stability point of view, using the bus 
participation factors of the first five minimum eigenvalues. 
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For the base case loading condition, the participation factors 
obtained for each of the minimum five eigenvalues are shown 
in Fig. 1. This figure shows how the bus participation factors 
of the load buses change as the system loadings and 
corresponding operating modes (eigenvalues) change. For the 
most critical 500 loading patterns and corresponding to each 
of the five minimum Eigenvalues, load buses 30, 29, 26, 19 
and 14 are found to have the maximum participation factors. 
Therefore, these load buses are selected as the most vulnerable 
load buses for all realistic operating conditions. Five separate 
neural networks (one each for each vulnerable load bus) have 
been designed and corresponding input and output patterns 
were generated for these five most vulnerable load buses in 
the system. 

 
 
Fig 1 Participation Factors for first five minimum Eigenvalues for base case 
loading pattern. 

A.  Generation of Patterns for ANN 
At each of the load buses thus selected, contribution of 

power-electrical distance i.e. real and reactive power moments 
between the particular load bus and all the six generators are 
calculated by running the power contribution computation 
program and electrical distance calculation program explained 
in Sec IV. The electrical distances ( thZ ) calculated between 
any generator-load bus pair remains the same for all the 
loading patterns as the network parameters are only involved 
in this calculation and is independent of the bus loadings. 
However, the power contributions from different generators 
need to be calculated repeatedly as the loadings on the other 
buses also affect it. Reactive power margins (reserves) at all 
the six generator buses, voltage magnitude and real as well as 
reactive power loadings at that load bus have been calculated 
by running the load flow program repeatedly for all the 1500 
loading patterns. Therefore, the total number of elements in 
the input vector for the test system are 3*6(number. of 
generators) + 3 =21. 

For the thi load bus, the input pattern vector is as follows  

2 N1

L i
i G G G 1G

L i L i L i L i
G 2 G N G 1 G 2

L i T
G N L i L i L i

I P  Q m a r , Q m a r , . . . . . , Q m a r , Q m o m , 

        Q m o m , . . . . , Q m o m , P m o m , P m o m ,

          . . . . . , P m o m , Q , P , V ]

= [
 

The distance to voltage collapse in terms of the reactive 
power-loading margin evaluated at a particular load bus has 
been used as the only target output for the ANN. The output of 
the contour program for various successive runs has been 
generated using the method explained in sec V. The Q-V 
curves drawn for bus No. 30 have been shown in Fig. 2. In 
this figure, contours of Q-V curves corresponding to the 
system real power peak loading conditions have been shown. 
It may be noted that the operating point of the system gets 
transferred from one QV curve to another QV curve as the Q 
limits on the generators are encountered one after the other.  It 
may be observed that the Q limit of generator at bus 2 is 
reached at point ‘A’ and at this operating point in the further 
simulation this PV bus is converted to a PQ bus. The 
successive change-over points as the Q limit points at 
generators at buses 8,5,11 and 13 are shown as points B,C,D 
and E respectively. The point ‘AA’ would have been the point 
of voltage collapse on the QV curve, had the generator Q 
limits not been considered in the analysis. The point ‘BB’ 
shown in the figure is the point of voltage collapse when the Q 
limits on all the generators have been hit. The distance to 
voltage collapse, which is used as the target output of ANN 
for this particular pattern, is the Mvar margin between the 
current operating point ‘O’ and the voltage collapse point 
‘BB’. This Mvar margin turns out to be 0.3344 PU for the 
system studied. The Mvar margin would have been 0.3622 PU 
if the Q limits of the generators were not considered. 

 
 
Fig 2 QV Curves and Point of collapse using proposed method for Base case 
  loading 

For each of the 1500 loading patterns the contour program 
is run once to find distance to the voltage collapse, which is 
used as the corresponding output pattern in the ANN training. 
The procedure is repeated for each of the most vulnerable 
buses in the system to generate the output patterns for each 
ANN corresponding to a vulnerable bus (bus no 30, 29, 26, 
19, and 14).For each of these five ANN’s, out of the total 
number of patterns generated, 80% of the patterns are used for 
the training of the ANN and the remaining 20 % are used for 
the testing purpose. 
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B.  Training and testing of ANN 
After trying many combinations of the number of hidden 

layers, Number of neurons in the hidden layer and the 
different transfer functions for the neurons in the hidden and 
output layers, the suitable architecture for the ANN has been 
arrived at. The suitable architecture for each of the five study 
load buses has been found to be the one having a single 
hidden layer with 10 neurons in it for the test system studied 
in this work. TANSIG transfer functions for the neurons at the 
hidden layer and PURELIN transfer function for the neuron at 
the output layer have been found to be appropriate. The 
training function for all the ANN is TRAINLM and the error 
function is MSE. The convergence characteristics and the 
minimum error achieved in the training of ANN both for the 
training patterns as well as for the fresh test patterns are 
presented in Table I. 

The distances to voltage collapse (VCPI) obtained using 
the contour program and the trained ANN for the 300 test 
patterns have been compared in Fig. 3 to Fig. 7 for the 
different vulnerable load buses. Real power loadings are 
varied in the first 100 test patterns and reactive power loading 
are varied for the remaining 200 test patterns. It is observed 
that for the base case loading condition, the VCPI’s found at 
bus no 14, 19, 26, 29 and 30 are 0.8047, 0.7995, 0.3214, 
0.3629 and 0.334 PU respectively. The VCPI’s found at bus 
14, 19, 26, 29 and 30 are 0.5846, 0.5568, 0.2602, 0.2750 and 
0.2722 PU for the 300th loading pattern. It is also observed 
that the change in VCPI at vulnerable load buses is highly 
nonlinear and its sensitivity to real and reactive power loading 
variations is different for different load buses. This 
characteristic of the VCPI at each load bus is also captured by 
the trained ANN, as the VCPI obtained from the trained ANN 
is closely matching with the VCPI obtained using the 
analytical method (contour program) for the  test patterns 
which had not been used for training the ANN. It has been 
found that the maximum error in the VCPI, considering the 
errors in VCPI’s for all the input-output patterns and for all 
the ANN’s trained for the different vulnerable load buses, is 
3.2% as shown in Table I. The error plot for the most critical 
load bus (Bus 30) for the 300 test patterns is shown in Fig. 8. 

 
 

 
 
Fig 3 Simulated output and output from ANN at bus no 14. 
 

 
 
Fig 4 Simulated output and output from ANN at bus no 19. 
 

 
 
Fig 5 Simulated output and output from ANN at bus no 26. 
 

 
 

Fig 6 Simulated output and output from ANN at bus no 29. 
 

 
 

Fig 7 Simulated output and output from ANN at bus no 30. 
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Fig 8 Error between Computed output and output from ANN at bus no 30 

 
TABLE I 

DETAILS OF TRAINING AND MAXIMUM ERROR IN OUTPUT 

 

VIII.  SUGGESTIONS FOR ONLINE APPLICATIONS 
In addition to the method proposed in the paper being 

applied for planning purposes, it is expected that the trained 
ANN will be very useful for real-time monitoring and control 
of power systems. In the context of online applications, the 
following suggestions may be useful: 
i) The real and reactive power loads, the voltage magnitude 

at the particular load bus and the reactive power margins 
available on all generators, used as the inputs to the ANN 
developed for that load bus could be directly obtained from 
the state estimation results corresponding to the current 
operating condition.   

ii) The computation of the real and reactive power 
contributions by the different generators to the particular 
load bus involves only very few floating-point 
multiplications, as this computation involves only the 
modification of the [Zbus] of the network to include the 
effect of loads. The modified [Zbus] could be computed 
starting from the pre-calculated Zbus matrix of the 
complete system network (without any loads represented) 
and only modifying the matrix in real time to represent the 
loads at the current operating point, making use of the state 
estimation and the topological analysis results.  

iii) The electrical distances between the different generator-
load pairs could be pre-calculated and kept in the computer 
memory for the complete system configuration and could 
be modified in real time taking care of any topological 
changes and the current on-load transformer tap positions, 
following the procedure discussed in Section IV B. 

iv) Simple multiplication of power contributions with the 
electrical distances for all the generator-vulnerable load 
bus pairs will be the Moments, which can be used as the 
additional inputs to the ANN 

IX.  CONCLUSION 
An ANN based method has been proposed for on-line 

voltage stability assessment of power systems in this paper. 
The most vulnerable buses of the system from voltage stability 
point of view have been identified by Modal analysis. A 
separate feed forward type of ANN has been trained for each 
vulnerable load bus The ANN’s are trained on wide range of 
loading patterns, covering all the heavy reactive power 
loading conditions. The proposed method has been applied to 
the IEEE 30 Bus Test System. Though the method has been 
proposed for a single area power system in the paper, it could 
be extended to an interconnected multi voltage control area 
power system by following the procedure for each voltage 
control area.  Further, some suggestions for the application of 
the trained ANN’s for real time monitoring of Voltage 
Stability of the system, utilizing the state estimation and 
system topology analysis results, have been made. 
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