
 

  
 
Abstract— This paper investigates the ability of Immune 
Algorithm (IA) in designing power system stabilizer (PSS) to 
damp the power system inter-area oscillation. For this the 
parameters of the PSS are determined by IA using a phase-based 
objective function. The numerical results are presented on a 2-
area 4-machine system to illustrate the feasibility of the proposed 
method.  To show the effectiveness of the designed PSSs, a three 
phase fault is applied. The simulation study shows that the 
designed PSSs improve the stability of the system.  Also, to 
validate the results obtained by IA, a simple Genetic Algorithm 
(GA) is applied for comparison. 

 
Index Terms— Immune algorithm, genetic algorithm, 

electromechanical oscillations, inter-area oscillation, power 
system stabilizer, dynamic stability.  

I.  INTRODUCTION  
LECTROMECHANICAL oscillations are inherent 

phenomena in electric power systems. With the 
development of extensive power systems, especially with 

the interconnection of these systems by weak tie-lines, 
electromechanical oscillations restrict the steady-state power 
transfer limits and affect operational system economics and 
security. Therefore, they have become one of the major 
problems in the power system stability area and have received 
a great deal of attention. Over the last two decades, there has 
been extensive research on the stabilization of 
electromechanical oscillations to enhance system small-signal 
stability by designing supplemental damping controllers. It is 
fully accepted that the stabilization of the electromechanical 
oscillations is only one of many considerations at the power 
design and planning stage, and therefore must take its place 
alongside the other considerations such as economics, 
reliability and operational robustness. 

To enhance system damping, the generators are equipped 
with power system stabilizers (PSSs) that provide 
supplementary feedback stabilizing signals in the excitation 
systems. PSSs augment the power system stability limit and 
extend the power-transfer capability by enhancing the system 
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damping of low-frequency oscillations in the order of 0.2 to 
3.0 Hz. 

DeMello and Concordia [1] presented the concepts of 
synchronous machine stability as affected by excitation 
control. They established an understanding of the stabilizing 
requirements for static excitation systems. In recent years, 
several approaches based on modern control theory have been 
applied to the PSS design problem. These include optimal 
control, adaptive control, variable structure control, and 
intelligent control [2]–[5]. 

Despite the potential of modern control techniques with 
different structures, power system utilities still prefer the 
conventional lead-lag power system stabilizer (CPSS) 
structure [5]–[8]. The reason is that the modern control 
techniques may give a controller with a high order which is 
difficult to implement. 

Over the last decades there has been a growing interest in 
algorithms inspired from the observation of natural 
phenomenon. It has been shown by many researches that these 
algorithms are good replacement as tools to solve complex 
computational problems. Various heuristic approaches have 
been adopted by researches including genetic algorithm, tabu 
search, simulated annealing, ant colony system, particle 
swarm optimization and immune algorithm. 

Also, study on the use of heuristic approaches to seek the 
optimal design of PSS in a power system is carried out by the 
researches around the world [9]-[14]. In view of this, in this 
paper an immune algorithm with phase-based objective 
function is used to design PSS to damp oscillations. 

The paper is organized as follows: to make a proper 
background, the basic concept of the IA is briefly explained in 
Section II.  The optimization problem is formulated in Section 
III. The results of the IA in a study system are given in Section 
IV and some conclusions are drawn in Section V. 

II.   OVERVIEW OF IMMUNE ALGORITHM: CLONAL SELECTION 
ALGORITHM 

The immune algorithm (IA) has desirable characteristics as 
an optimization tool and offer significant advantages over 
traditional methods. They are inherently robust and have been 
shown to efficiently search the large solution space containing 
discrete and continuous parameters and non-linear constraints, 
without being trapped in local minima. The IA may be used to 
solve a combinatorial optimization problem.  

In the IA, antigen represents the problem to be solved. An 
antibody set is generated where each member represents a 
candidate solution. Also, affinity is the fit of an antibody to the 
antigen. In the IA, the role of antibody lies in eliminating the 
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antigen, while the lymphocyte helps to produce the antibody 
[15]-[16].  

In the immune system, there are two kind of lymphocyte; T 
and B; where each of them has its own function. The T 
lymphocytes develop in bone marrow and travel to thymus to 
mature. The B lymphocytes develop and mature within the 
bone marrow. The main purpose of the immune system is to 
recognize all cells within the body and categorize those cells 
as self or non-self. Self or self antigens are those cells that 
originally belong to the organism and are harmless to its 
functioning. The disease-causing elements are known as non-
self. 

Both B-cells and T-cells have receptors that are responsible 
for recognizing antigenic patterns by different function. The 
attraction between an antigen and a receptor cell (or degree of 
binding) is known as affinity. To handle the infection 
successfully and effectively, both B-cells and T-cells may be 
required. After successful recognition, cells capable of binding 
with non-self antigens are cloned.  

In the IA the elements of the population undergo mutations 
resulting in a subpopulation of cells that are slightly different. 
Since the mutation rate is high, this mutation is called 
hypermutation. 

By the above description, the principle of IA can be 
summarized in Fig. 1.  

 

 
  

Fig. 1.  General principle of the immune algorithm. 

As Fig. 1 shows at the first step,  n  antibody generated 
randomly and evaluated using a suitable affinity measure. 
While the affinity of all antibodies is known, new population 
is generated through three steps; replacement, cloning and 
hypermutation. These three steps maintain the diversity and 
help the algorithm to expand the search space.  In the 
replacement step, the low antibodies are replaced. Those with 
the highest affinity are selected to proliferate by cloning where 
the cloning rate of each immune cell is proportional to its 
affinity.  If the high affinity antibody has not been cloned, 
hypermutation is applied where the mutation rate for each 
immune cell is inversely proportional to its affinity [15]. 

When the new population is generated, IA continues with 
repeated evaluation of the antibodies through replacement, 
cloning and hypermutation until the termination criterion is 
met. The termination criterion could be the number of iteration 
or when an antibody of maximal affinity is found.   

III.   STUDY SYSTEM AND PROBLEM FORMULATION 
A 2-area-4-machine system is used. This test system is 

illustrated in Fig. 2. The subtransient model for the generators, 
and the IEEE-type DC1 and DC2 excitation systems are used 
for Machines 1 and 4, respectively. The IEEE-type ST3 
compound source rectifier exciter model is used for machine 
2, and the first-order simplified model for the excitation 
systems is used for Machine 3.  
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Fig. 2.  Single-line diagram of a 2-area study system. 

 
Two PSSs are going to be designed using IA for the above 

system and placed on Machines 2 and 3. The following 
structure shown by Fig. 3 is used for each PSS where the input 
to PSS could be generator speed (GS) or the generator 
electrical torque (GET). In this paper, the generator speed 
(GS)  is considered as input.  

 

  
 
Fig. 3.  Power system stabilizer model block diagram. 

 
By considering the above structure for PSS, the following 

equation can be written for the phase: 

Lw θθθ +=      (1) 

where θ  is the phase of PSS, wθ  is the phase of washout 
and Lθ  is the phase of lead-lag compensator. 

Fig. 4 shows that the PSS is a supplementary controller to 
the excitation system. 

The ideal stabilizer frequency response in terms of phase 
(the equation (1)) should be equal to the negative of the phase 
of the transfer function between the excitation input (Vref) and 
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GS known as iθ . Therefore, the parameters of the PSS, 

4321 ,,,, TTTTT , are determined by IA by minimizing the 
following objective or cost function (2-norm of the difference 
of the two phases): 

2)( θθ −−= if     (2) 

The PSS parameters can be changed till the algorithm 
reach to a close fit to the ideal phase angle response 
characteristics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.  Excitation system with conventional lead-lag PSS. 
 
 

IV.   DESIGNING OF PSS  USING IA 
A population of n  antibodies are generated randomly, 

where n  is considered to be 50. The goal of the optimization 
is to find the best value for the PSS parameters, 

4321 ,,,, TTTTT (Fig. 3).  Therefore, a configuration is considered 
for each antibody as a vector ],,,,[ 4321 TTTTT . 

During each generation, the antibodies are evaluated with 
some measure of fitness, which is calculated from the 
objective function defined in (2).  Then the best antibody is 
chosen. In the current problem, the best antibody is the one 
that has minimum fitness. This antibody is chosen as antigen 
and the affinity of other antibodies is calculated with the 
selected antigen. The affinity of each antibody is calculated by 
the following equation: 

)(
)(

antibodyf
antigenfaffinity =     (3) 

Moving to a new generation is based on the antibodies with 
the high and low affinity by using cloning and replacement. 
Also, the mutation is applied to each generation in order to 
recognize not only the antigen itself but also antigens that are 
similar. 

The above procedure continues until the last iteration is met. 

In this paper, the number of iteration is set to be 100.  
First the PSS is designed for Machine 2. First of all, the 

negative of the ideal phase for Machine 2 is calculated and is 
shown in Fig. 5.  Now the phase of PSS has to be equal to the 
negative of the ideal phase for Machine 2. Therefore IA starts 
searching to find the best values for the PSS parameters, 

4321 ,,,, TTTTT . In this paper, the value of washout gain k  in 
Fig. 3 is considered to be 50. For each value obtained for the 
parameters 4321 ,,,, TTTTT , a phase for PSS is obtained.  The IA 
is trying to fit the obtained phase of PSS with the ideal phase 
of the system shown in Fig. 5. As it can be seen in Fig. 5, the 
negative phase of Machine 2 is highly nonlinear but the 
objective function in (2) tries to find a phase for PSS with the 
minimum error.  
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Fig. 5.  The negative ideal frequency response characteristic of Machine 2.  
 

The best phase obtained by IA for PSS is shown in Fig. 6 
with the following values for 4321 ,,,, TTTTT : 
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Fig.  6. Comparison of the negative ideal frequency response characteristic 
and the phase of designed PSS by IA for Machine 2.  
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With the same procedure, the second PSS is designed for the 
Machine 3. Fig. 7 shows the phase of Machine 3 and Fig. 8 
shows the best fitted phase by IA for the PSS. 
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Fig. 7.  The negative ideal frequency response characteristic of Machine 3.  
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Fig. 8. Comparison of the negative ideal frequency response characteristic and 
the phase of designed PSS by IA for Machine 3.  
 

The following values are obtained for the second PSS: 

0.04569
,0.0023861,0.04337,0.008373,8716.3

4
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=
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To validate the obtained result by IA, a simple GA is 
applied.  The number of chromosomes in the population is set 
to be 50, which is the same as in IA. One point crossover is 
applied with the crossover probability 9.0=cp  and the 
mutation probability is selected to be 01.0=mp .  Also, the 
number of iterations is considered to be 100, which is the 
stopping criteria used in IA. The obtained parameters of PSS 
for Machine 2 by GA are as follows:   

04361.0
,012587.0,0320.0,0031185.0,8813.4

4

321

=
====

T
TTTT  

Also, the following parameters for PSS of Machine 3 are 
obtained by GA: 

044631.0
,0051746.0,042769.0,0026512.0,1133.4

4

321

=
====

T
TTTT  

 
For the two designed PSSs by IA and GA, the average best-

so- far of each run are recorded and averaged over 10 
independent runs. To have a better clarity, the convergence 
characteristics in finding the best values for PSS parameters 
are given in Figs. 9-10.  These figures show that IA is 
performing better in finding the best solution due to 
hypermutation operator in IA. 
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Fig. 9.  Convergence characteristics of IA and GA on the average best-so- far 
in finding the parameters of PSS placed on Machine 2. 

 

0 10 20 30 40 50 60 70 80 90 100
1280

1300

1320

1340

1360

1380

1400

1420

1440

1460

1480

1500
Machine 3

Iteration

A
ve

ra
ge

 b
es

t-
so

 f
ar

 IA
 GA

 
 

Fig. 10.  Convergence characteristics of IA and GA on the average best-so- far 
in finding the parameters of PSS placed on Machine 3. 
 

Now the designed PSSs by IA and GA are placed in the 
study system (Fig. 2). To show the effectiveness of the 
designed PSSs by IA and GA, a time-domain analysis is 
performed for the study system. A three-phase fault is applied 
in one of the tie circuits at bus 101. The fault persisted for 70.0 
ms; following this, the faulted circuit was disconnected by 
appropriate circuit breaker. The system operated with one tie 
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circuit connecting buses 3 and 101. The dynamic behavior of 
the system was evaluated for 15 s. Fig. 11 shows that IA has 
good ability to design PSSs to damp the oscillations. Also, the 
machine angles, δ , with respect to a particular machine, were 
computed over the simulation period and shown in Figs. 12-
13. In the study system, Machine 1 is considered as the 
reference generator. 
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Fig. 11.The response of the system to a three-phase fault at Bus 3. 
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Fig. 12.  The response of generator 3 to a three-phase fault. 
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Fig. 13.  The response of generator 4 to a three-phase fault. 
 

V.  CONCLUSIONS 
This paper investigated the ability of Immune Algorithm 

(IA) in designing power system stabilizer (PSS) to damp the 
inter-area oscillations. For this the parameters of the PSS are 
determined by IA using a phase-based objective function. To 
show the effectiveness of the designed PSSs, a three phase 
fault is applied at a generator bus. The simulation study shows 
that the designed PSSs improve the stability of the system. 
Also, a simple GA is applied to validate the results. The 
obtained results show that the IA has the ability of solving the 
complex power system problems. For a future work the PSS 
can be designed by IA using an eigenvalue-based objective 
function to compare with the results obtained in this paper. 
Also, to improve the damping, Static Var Compensators 
(SVC)  can be used and a supplementary controller can be 
designed by IA for the SVC. 
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