The article presents design and test results of a Schottky barrier diode limiter at microwave frequency. The test result shows that the Schottky diode limiter circuit provides nearly 1.5 dB flat leakage over the input power level of 15 dB. It is also demonstrated up to 15 dB range of threshold power level adjustment. The adjustability of the threshold power level by bias adjustment will eliminate the optimization of diode structure for limiting of different power levels.

REFERENCES

© 2010 Wiley Periodicals, Inc.

INTERNAL PRINTED LOOP/MONOPOLE COMBO ANTENNA FOR LTE/GSM/UMTS OPERATION IN THE LAPTOP COMPUTER

Ting-Wei Kang and Kin-Lu Wong
Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; Corresponding author: kangtw@ema.ee.nsysu.edu.tw

Received 24 September 2009

ABSTRACT: A promising internal laptop computer antenna capable of generating two wide operating bands to respectively cover the LTE700/ GSM850/900 (698–960 MHz) and GSM1800/1900/UMTS/LTE2300/2500 (1710–2690 MHz) operation is presented. The antenna occupies a size of 85 × 10 × 4 mm3 along the top edge of the supporting metal frame of the display panel and is suitable to be embedded inside the casing of the laptop computer for practical applications. The antenna is a printed loop/monopole combo antenna formed by combining a quarter-wavelength printed loop with an internal matching circuit and a printed monopole with an internal distributed inductor. The proposed combo antenna leads to reduced size yet wide bandwidth to cover the eight-band LTE/GSM/UMTS operation. © 2010 Wiley Periodicals, Inc.

Microwave Opt Technol Lett 52: 1673–1678, 2010; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.25256

Key words: mobile antennas; internal laptop computer antennas; printed loop antennas; printed monopole antennas; combo antennas

5. CONCLUSION
The article presents the nonlinear behavior of Schottky diodes under different bias load line conditions and discusses the suitable bias conditions for using the Schottky diodes as limiter. This

Figure 6 Tested P_{in} Vs P_{out} of the limiter at different control voltages

c. Attenuation decreases with the increase of RF power level for control voltage more than 0.4 V.

For limiter function, attenuation should increase with the increase of RF power level. Therefore, for the limiter circuit using these Schottky diodes, the control voltage should be <0.4 V.

Figure 5 shows the tested output power (P_{out}) with input power (P_{in}) of the limiter circuit at control voltage (V_c) of 0 V for different values of bias resistor (R_b). The tested insertion loss of the assembled limiter is nearly 0.9 dB at small signal condition at all values of bias resistor. The deep of the I–O curves are correspond to the diode impedance of 50 Ω, here the circuit provides maximum attenuation. The plot shows that rate of change of attenuation with the input RF power level is a function of bias resistor (R_b). This is also evident from the bias load line L1 and L3 in Figure 1 corresponds to same supply voltage but with higher and lower value of bias resistors, respectively. In case of L3, RF resistance of the diodes decreases sharply than in case of L1 with the increase of RF power level. It is also clear from the plot that to keep output power nearly constant, over the limiting power level, there is an optimum bias resistor. In this case it is nearly 10 Ω. In case of 10 Ω bias resistor, the flat leakage is nearly within 1.5 dB around output power of 0-dBm over the input power range of 15 dB.

Figure 6 shows the input-output characteristic of the limiter at bias resistor of 10 Ω for different values of V_c. The plot shows that by changing V_c, limiting power level can be adjusted. It shows that with the variation of control voltage from −0.3 to +0.3 V, limiting power level varies from −10 to +5 dBm. For each control voltage, the limiting power range is nearly 15 dB. Beyond the limiting power range, increases of output power levels are because of the decrease of diode impedance beyond 50 Ω. Another important observation is that for all values of control voltages up to 0.2 V, I–O curves are very much linear at small signal condition. However, for control voltage = 0.3 V, small signal insertion loss increases thus introduces some nonlinearity in the I–O curves.

DOI 10.1002/mop MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Vol. 52, No. 7, July 2010 1673
1. INTRODUCTION

As the long term evolution (LTE) service [1] can provide better mobile broadband and multimedia services than the existing GSM and UMTS mobile networks [2], it has recently become attractive to incorporate the LTE with the GSM/UMTS operation in the mobile devices. For this application, however, there are very few of the internal mobile device antennas providing the required bandwidths in covering all the operating bands of the LTE/GSM/UMTS operation; they include three LTE bands in the LTE700 (698–787 MHz), LTE2300 (2305–2400 MHz), and LTE2500 (2500–2690 MHz), four GSM bands in the GSM850 (824–894 MHz), GSM900 (880–960 MHz), GSM1800 (1710–1880 MHz), and GSM1900 (1850–1990 MHz), and one UMTS band (1920–2170 MHz). That is, an eight-band internal mobile device antenna for the LTE/GSM/UMTS operation is required. This imposes a challenge for the internal antenna design, as there is usually very limited space offered in the mobile device for the embedded internal antennas.

The available internal laptop computer antennas that have been reported in the published papers are mainly for covering the five-band GSM850/900/1800/1900/UMTS operation [3–10]. To our knowledge, at present, there are no reported internal laptop computer antennas satisfying the eight-band LTE/GSM/UMTS operation.

In this article, we present a promising internal laptop computer antenna of small size 85 x 10 x 4 mm3 to generate two wide operating bands to respectively cover the LTE700/GSM850/900 (698–787 MHz) and GSM1800/1900/UMTS/LTE2300/2500 (1710–2690 MHz) operation. The small occupied size allows the antenna to be embedded in the laptop computer as an internal antenna. The antenna is a printed loop/monopole combo antenna, which is formed by combining a quarter-wavelength printed loop with an internal matching circuit [11, 12] and a printed monopole with an internal distributed inductor [13, 14] into one antenna. The proposed combo antenna leads to reduced size yet wide bandwidth for the antenna to cover the eight-band LTE/GSM/UMTS operation. Details of the proposed combo antenna are studied in the article, and the results of the fabricated prototype are presented and discussed.

2. PROPOSED PRINTED LOOP/MONOPOLE COMBO ANTENNA

Figure 1 shows the geometry of the proposed printed loop/monopole combo antenna for LTE/GSM/UMTS operation in the laptop computer. The antenna is mounted along the top edge of the supporting metal frame (a 0.2-mm thick copper plate measuring 220 x 260 mm2 in this study) of the display panel. By considering the practical practice that the central region of the top edge of the display panel is usually reserved for the lens of the embedded camera in the modern laptop computers, the proposed antenna is placed along the top edge with a spacing of 30 mm to the central line. The antenna has a length of 85 mm along the top edge (y direction), a height of 10 mm above the top edge (z direction), and a thickness of 4 mm in the x direction.

The antenna is mainly formed by using a printed loop with an internal matching circuit and a printed monopole with an internal distributed inductor. In addition to the major portions of the loop and monopole printed on a 0.4-mm thick FR4 substrate, the widened end portion of size 3.6 x 40 mm2 for the monopole and the widened central portion of size 3.6 x 36 mm2 for the loop are added, which help achieve widened bandwidths in

![Figure 1](image-url)
the lower and upper bands of the proposed antenna. The two widened portions are cut from a 0.2-mm thick copper plate and are aligned to be in the x-y plane, orthogonal to the supporting metal frame in the y-z plane. In this case, with the inclusion of the 0.4-mm thick FR4 substrate, the thickness of the proposed antenna in the x direction is 4 mm only, which is acceptable to be embedded inside the casing of the laptop computer. The printed loop and monopole share a common feeding point A and a common grounding point B at the antenna ground (size 5 x 85 mm², also printed on the 0.4-mm thick FR4 substrate); both point A and B are, respectively, connected to the central conductor and outer grounding sheath of a 50-Ω mini coaxial line for testing the antenna in the experiment. The antenna ground is electrically connected to the supporting metal frame of the laptop display through two via-holes at point C and C₀ shown in the figure.

In the printed loop, the internal matching circuit consisting of a coupling strip and an inductive strip is equivalent to a series LC matching circuit [11, 12]. The inductive strip of width 0.3 mm functions as an inductive element and its length is selected to be 17 mm in this study. The coupling strip is tuned to have a length of 10 mm, which is capacitively coupled to the front portion of the printed loop through a coupling gap of 0.5 mm; this provides capacitive reactance and functions as a series capacitive element. With the proper internal matching circuit selected, the printed loop can be excited at its quarter-wavelength resonant mode at about 900 MHz [11] for size reduction, which is different from the half-wavelength mode excitation of many traditional loop antennas for mobile phone applications [15–30].
The internal matching circuit can also lead to bandwidth widening of the higher-order modes of the printed loop. Detailed operating principle of the quarter-wavelength printed loop with the internal matching circuit has been presented in [11]. However, with the printed loop only, the obtained bandwidths of the antenna’s lower and upper bands are still not wide enough for covering the desired eight-band LTE/GSM/UMTS operation, especially the lower-band bandwidth far from covering the LTE700/GSM850/900 operation in the 698–960 MHz band.

To achieve a wide lower band to cover the LTE700/GSM850/900 operation, the printed monopole is added in the proposed antenna. To achieve a reduced-size printed monopole, a meandered section (line width 0.3 mm, line spacing 0.6 mm) is introduced in the front portion of the monopole. This meandered section functions as a distributed inductor that contributes additional inductance to compensate for the increased capacitance resulting from the decreased resonant length of the monopole [14, 31, 32]. Effects of the distributed inductor on reducing the resonant length of the printed monopole have also been shown in [14]. With the distributor inductor and the widened end portion, the printed monopole provides a resonant mode at about 750 MHz to incorporate the quarter-wavelength loop mode at about 900 MHz to achieve a wide lower band for the LTE/GSM850/900 operation. In addition, the printed monopole also contributes its higher-order resonant modes to incorporate those generated by the printed loop to achieve a wide upper band to cover the desired LTE1800/1900/UMTS/LTE2300/2500 operation in the 1710–2690 MHz band.

3. RESULTS AND DISCUSSION

The proposed antenna was fabricated and measured. Figure 2(a) shows the measured and simulated return loss of the fabricated prototype; the photo of the fabricated prototype is also shown in Figure 2(b). The simulated results obtained using Ansoft HFSS...
second mode at about 1700 MHz, and a third dual-resonant mode at about 3000 MHz are seen. The second and third modes contributed to the antenna’s upper band to achieve a very wide bandwidth of larger than 1.7 GHz in this study.

Figure 5 shows a comparison of the simulated return loss for the proposed antenna, the case with 1-mm wide end portion in the printed monopole (Ref. 1), and the case with 1-mm wide central portion in the printed loop (Ref. 2) is shown in the figure. Results clearly indicate that the two widened portions are crucial in achieving good impedance matching of the two resonant modes in the antenna’s lower band, and the impedance matching improvement for frequencies over the antenna’s upper band is also obtained as well.

Figure 6 plots the measured radiation patterns at 830 and 2200 MHz (central frequencies of the 698~960 and 1710~2690 MHz bands) for the proposed antenna. In the x-y plane, the vertical radiation E_y at both frequencies is near-omnidirectional, which is advantageous for practical applications to achieve good coverage in all the directions in the azimuthal plane. Figure 7 presents the measured antenna gain and simulated radiation efficiency for the proposed antenna. Results for the desired lower band are shown in Figure 7(a), while those for the desired upper band are shown in Figure 7(b). The measured antenna gain is about 0~2.0 dBi over the 698~960 MHz band, and 1.0~3.7 dBi over the 1710~2690 MHz band. For the simulated radiation efficiency, which includes the mismatch loss, it is about 50~60% and 60~90% over the 698~960 MHz and 1710~2690 MHz, respectively.

Also, note that the 3D average antenna gain defined as the antenna gain over all of the space [28] is another important radiation characteristic to be considered for practical laptop computer applications. The 3D average antenna gain has been derived to be equivalent to the radiation efficiency of the antenna.

<table>
<thead>
<tr>
<th>TABLE 1</th>
<th>Simulated 3D Average Antenna Gain for the Proposed Antenna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Antenna Gain (dBi)</td>
<td>Proposed Antenna with 70-cm Mini Coaxial Line Loss (dBi)</td>
</tr>
<tr>
<td>LTE700 band</td>
<td>728 MHz (Tx)</td>
</tr>
<tr>
<td>GSM850 band</td>
<td>836 MHz (Tx)</td>
</tr>
<tr>
<td>880 MHz (Rx)</td>
<td>2.4</td>
</tr>
<tr>
<td>GSM900 band</td>
<td>900 MHz (Tx)</td>
</tr>
<tr>
<td>940 MHz (Rx)</td>
<td>2.6</td>
</tr>
<tr>
<td>GSM1800 band</td>
<td>1750 MHz (Tx)</td>
</tr>
<tr>
<td>1840 MHz (Rx)</td>
<td>1.5</td>
</tr>
<tr>
<td>1960 MHz (Rx)</td>
<td>0.4</td>
</tr>
<tr>
<td>UMTS band</td>
<td>1950 MHz (Tx)</td>
</tr>
<tr>
<td>2140 MHz (Rx)</td>
<td>0.4</td>
</tr>
<tr>
<td>LTE2300 band</td>
<td>2345 MHz (Tx/Rx)</td>
</tr>
<tr>
<td>LTE2500 band</td>
<td>2535 MHz (Tx)</td>
</tr>
<tr>
<td>2655 MHz (Rx)</td>
<td>1.2</td>
</tr>
</tbody>
</table>

The specification is the minimum average antenna gain required for practical applications of the internal antenna in the laptop computers [7]. The loss owing to the 70-cm mini coaxial line used in practical laptop computers is estimated to be -1 dB in the lower band and -2 dB in the upper band.
eight operating bands. Further, the antenna occupies a size of 85 MHz for the GSM1800/1900/UMTS/LTE2300/2500 operation. The results given in the table indicate that the 3D average antenna gain of the proposed antenna meets the required specification over the eight-band LTE/GSM/UMTS bands.

4. CONCLUSIONS

A combo antenna formed by a printed monopole and a printed loop suitable for eight-band LTE/GSM/UMTS operation in the laptop computer has been proposed. The antenna has been fabricated and tested. It has been shown that the printed monopole and the printed loop can be, respectively, adjusted such that their contributed resonant modes are incorporated into two wide operating bands for the proposed antenna. The wide lower band covers the 698–960 MHz band for the LTE700/GSM850/900 operation, whereas the wide upper band covers the 1710–2690 MHz for the GSM1800/1900/UMTS/LTE2300/2500 operation. The antenna also shows good radiation performances over the eight operating bands. Further, the antenna occupies a size of 85 × 10 × 4 mm² when mounted along the top edge of the laptop display, making it promising to be applied as an internal laptop computer antenna.

REFERENCES

15. Ansoft Corporation, Available at: http://www.ansoft.com/products/hf/hfss/, Ansoft Corporation HFSS, USA.

© 2010 Wiley Periodicals, Inc.