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Abstract— A methodology for the design of multiple via-hole
and air-bridge transitions of arbitrary shape in multilayered mul-
tiport microstrip circuits is presented in lthis paper. Application
of multiple via holes to the design of microstrip filters and other
devices will be discussed. To properly describe the current along
the vertical post, the simple pulse function with a triangular cross
section is used in the moment method a)nalysis. Circularly and
rectangularly shaped vertical transitions are analyzed for several
practical applications. Comparisons of numerical results with
experimental and available analytical data~show good agreement.

I. INTRODUCTION

COMPACT SIZE and large scale integration of electronic

devices have been driving the trend toward a multilay-

. ;
— removable ground plane

-1-z

ered interconnection system. Via holes and other vertical shunt

posts, such as bond wires and air bridges, are increasingly im-
portant in microwave integrated circuitimonolithic-microwave
integrated circuit (MIC/MMIC) design. Via holes are used to
connect parallel microstrip lines for signal transmission be-
tween different levels. Vias can be modeled by lumped circuit
elements at lower frequencies. The equivalent circuits of vias
based on the quasi-static analysis have been investigated by
Wang et al. [1],[2]. At higher frequencies the propagation
characteristics of via holes have a stronger electromagnetic
effect on the performance of devices, therefore, rigorous

analysis is necessary to predict frequency response correctly.
Full-wave analysis and modeling has been carried out by
the finite-difference time-domain (FDTD) approach [3], [4],
the transmission-line matrix method [5], the mode-matching
technique [6], the spectral-domain analysis (SDA) [7], [8],
and the matrix-penciled moment method [9]. Most of these
analyses are limited to rectangular discretization or the thin-
wire approximation. In this paper, a combined mixed-potential
integral equation (MPIE) and electric-field integral equation
(EFIE) technique is presented to model vias of arbitrary shape.
The MPIE method [10]–[12] combined with the triangular
patch expansion function [13] has been proven efficient to
model arbitrarily shaped planar geometries [14], [15]. To
model the vertical current along the vias, a simple pulse

Manuscript received March 28, 1996. This research was supported in
part by U.S. Army Research Grant DAAH 04-913-G-0228and Hughes-UC
Microelectronics Contract 94-005.

M.-J. Tsai is with Lucent Technologies, Murray Hill, NJ 07974 USA.
C. Chen is with the Anritsu/Wiltron Company, San Jose, CA 95123 USA.
N. G. Alexopoulos is with the Electrical Engineering Department, Univer-

sity of California, Los Angeles, CA 90095 USA.
T.-S. Horng is with the Electrical Engineering Department, Nationat Sun

Yat-Sen University, Kaohsiung, 80424 Taiwan, R.O.C.
Publisher Item Identifier S 0018-9480(96)08555-9.

~’
— removable ground plane
—

Fig. 1. Generic via-hole and air-bridge transitions in a multilayered medium.

function with a triangular cross section is used to approximate
the current density. The EFIE formulation is adopted to
evaluate the interaction between vias since the integration over
the vertical axis can be done analytically. The main advantage
of using EFIE here is that only one less-singular Green’s
function (G# ) is involved, so it simplifies the formulation
and ‘computation.

The combined MPIE-EFIE method presented in this paper

meshes the whole microstrip geometry with small triangular
facets. The MPIE formulation is used to evaluate the self-
coupling terms of planar subdomains as well as the mutual-
coupling terms between planar and vertical cells. The self-
coupling submatrix due to the vertical posts is calculated
from the EFIE formulation. These theoretical analyses will
be detailed in Section II. Several examples with via-hole
applications are analyzed and discussed in Section III.

II. COMBINED MPIE-EFIE FORMULATION

A generalized three-dimensional (3-D) multilayered mi-
crostrip circuit is shown in Fig. 1. The medium is assumed
to be infinite in the ~-g plane, and microstrip patterns are
assumed to be of infinitesimal conductor thickness. Both the
upper and lower ground planes are removable to represent
either a shielded, semi-open, or open structure. Multiple vias
as well as air bridges are used to connect different microstrips.
Grounded vias are also applied to achieve the short effect.

The construction of an EFIE is the major step toward solving
a pertinent problem. An EFIE can be set up by applying the
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boundary condition of zero tangential field on metal surface

S as

where ; is on microstrips. GE is the dyadic electric-field
-+

Green’s function, and J ~ is the surface current distribution.
For simplicity, we neglect conductor and dielectric losses. If

the magnetic vector potential (A) and charge scalar potential

(V) as E = –jwA – VV are introduced, then (1) can be
rewritten as an MPIE

~inc
fLx E (;)=ii X

=73X

-+
where GA and G~ are the dyadic Green’s functions for A
and V, respectively. First, both Green’s functions are derived
for multilayered structures in the spectral domain analytically,
then evaluated in the spatial domain using Sommerfeld inte-

grals [16]. J. and q, are the unknown dis~ibutions of electric
surface current and charge. The reason for using MPIE instead

of EFIE is that the s~atial-domain Green’s functions ~ A and, ..
Gq are less singular than GE, so the computations become
simpler and more stable. However, the integration over the
vertical basis function can alleviate the singular behavior of

GE, therefore, the MPIE (2) is used to model the mutual
coupling between planar elements, while the EFIE (1) is used
for vertical mutual-coupling effects.

The method of moments is applied to convert the integral

equations to an algebraic linear system. The first step is
to expand the unknown current distribution with a set of
basis functions. To model the planar current of arbitrarily

shaped microstrip geometries, we adopt the triangular patch

subdomain function [13], shown in Fig. 2(a), and defined as

t%(;) =

{

en,

;ET;

otherwise
(3)

where T; denote the domains of two adjacent triangles with
area A;. The n~h expansion function is uniquely associated
with a pair of triangles sharing a common edge (interior
edge) whose length is &. This basis function can describe
vector current flow, and it automatically satisfies the boundary
conditions on microstrips because only tangential components
exist along the boundary edges. Its divergence is constant
over the associated triangular face which is equivalent to a
constant-charge basis function.

edge

glob-d origin Lx
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Fig. 2. Current expansion functions. (a) Triangular patch function (tri)for
planar currenc (b) vertical volume current function (v;T) for current atong
vias.

To model the vertical current along the vias, a vertical
volume current function with a triangular cross section, shown
in Fig. 2(b), is used in this analysis. It is defined as

{

,.1
?&n(;) = ~~; ;ETn

o; otherwise
(4)

where d= is the height of the vertical basis function in the

2 direction. Its divergence shows two associated charge cells
uniformly distributed on the top and bottom faces, as shown
in Fig. 2(b). Any vertical posts with either a rectangularly,
circularly, or arbitrarily shaped cross section can be expanded
by using this proposed basis function. This basis function is
modified from the similar function with a rectangular cross
section [7]. It is noted that the l/dZ term is used in the
definition of the vertical currents because of the consistency
of length-unit-dimension in the impedance matrix elements. In
addition, this volume basis function is valid for the via size
which is small compared to the wavelength. That is, the surface
current on the small via is approximated by the uniformly
distributed volume cu~ent.

The phmar current (~ H ) on the planar microstrips, and

vertical current ( 1 v) along the vias can be expanded as

n=l n=l

respectively. NH and Nv are the unknown numbers of

the

(5)

the

plakir and-vertical cells. An and Bn are unknown expansion
coefficients. After testing with the same functions (Galerkin’s
procedure), a system of linear equations can be obtained as

[

[zHHIN~*N~ [zHvIN~*N.

1 k%].[ZVH]N..NH [ZVVINV*NV ~,T

-[ 1[V]IVH
– [“hv ~

(6)

where T = NH + Nv is the total number of unknowns.
[ZHH], [ZHV], [ZVH], and [Zvv] are self- and mutual-
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coupling submatrices between two different basis functions.
[ZHH] based on MPIE (2) can be expressed as

/!
Z~j!j = jW dS dS&im(;+) . ~(;l;,)

Sn s.

. Gg(~l~,)[V~ . t~Zm(~J]. (7)

The Green’s function for the vector potential GA is coupled

with planar current basis function tri,while G~ is coupled
+

with the charge distribution (Vs . trz).
The self-coupling term [Zvv] can Ibe expressed from the

EFIE in the following form:

Z~;=~~ [~~v:rm.~v~r.dzdzs]dSdSs

1——
//dZ d., ~m Sn

[G&’] dS dS~ (8)

where G~’ is the Green’s function analytic 22 component for

the electric field after performing the integration over z and
z.. The original Green’s function G& has the more singular

near-field behavior as O ( l/p2 ). However, since the simple

pulse function is used for V;T, the integration over the vertical

axis can be done analytically. As a result, the new integrand

G# is less singular as 5A and Gq tc) 0(1/p), so h is easy

to evaluate G# through the Sommerfeld integral. Therefore,

no charge distribution or scalar potential is involved in these

terms. The formulation of G%’ for single-layered media is

expressed in the Appendix.

The mutual coupling terms [ZHV] and [ZVH] are transposes

of each other. [ZVH] can be written a.s

‘==L.,L [iv;’~”=”i;z.dzldsdss
‘%L{[@G~’’+G’(’+)iGq(’-)l

1.(Vt;in) dS dS. (9)

where the Green’s functions GA and Gq of vector and scalar
potentials from MPIE are used. Instead of using G~z, we
introduce G~h with the relationships G~ = 8G~h it%z and

G~y = ~Gfih/dy. Similarly G~h’ denotes the analytic ex-
pression of G~h after the integration over the vertical length

.
of testing basis ver~. The interaction between current basis
functions can be eliminated by using the vector identity, so

only charge distribution (V.trin ) is involved in (9). They are
listed in the Appendix for a simple single-layered structure.

In this analysis, the excitation mechanism is a series delta-

gap voltage source attached at the end of the input line.
Therefore, only one nonzero element exists in the excitation
vector [V], and it is normalized to be 1 V. Once the matrix
elements and excitation vector are determined, the current
distribution can be solved, and all the circuit parameters can
be obtained.

The most time-consuming steps of this algorithm are evalu-
ating the matrix elements and solving the matrix equation. In

this analysis, the standard subroutine DLINCG for a general
complex linear equation is utilized from the IMSL Mathemat-

ical Library at the University of California at Los Angeles
(UCLA) Office of Academic Computing (OAC) Center. To
accelerate the process of filling the matrix, several numerical
techniques are applied [17]–[19]. First, the Green’s func-
tions are evaluated and stored as numerical tables versus
the radial distance for interpolation to accelerate the com-
putation of reaction integrals. All the matrix elements are
divided into nonsingular and singular parts. The singular part
comes from the singularity of the spatial-domain Green’s
function for field points that are very close to the source
point. It can be evaluated by four seven-point quadrature
combined with the analytic expressions. The nonsingular part
is approximated by a three-point average. The process of
tilling the impedance matrix is based on faces instead of
interior edges to eliminate many redundant calculations. For
example, it takes only 39.2 s of central-processing unit (CPU)
time to solve a 555-unknown problem on an IBM RS/6000
workstation. The step of matrix inversion takes about half

of the CPU time, while the evaluation of matrix elements
takes the rest in this case. As the unknowns increase, the
matrix solve-time becomes the dominant factor in the com-
putation.

111. NUMERICAL RESULTS AND DISCUSSIONS

Several examples with via-hole/air-bridge applications are

discussed in this section. All computations are performed on

the cluster system of IBM RS/6000’s in the UCLA OAC

Center.

A. Grounded Via in an Infinite Microstrip Line

The first example is an infinite microstrip line grounded by a
via, which was presented in [20] by using the planar waveguide
model. The structure and analyzed results are shown in Fig. 3.

Three different simulations are investigated: 1) rectangular
ground via expanded by one vertical current basis with a
rectangular cross section; 2) rectangular ground via expanded
by two vertical current bases with a triangular cross section;
and 3) circular ground via expanded by eight vertical current
bases with a triangular cross section. The reference plane is
along the center of the ground via. The reflection coefficient
of an infinite microstrip line without ground via should be
close to zero. However, after adding the ground via, which is
expanded by the new developed basis function, the reflection
coefficient now has a magnitude close to one and a phase close
to 180°. This means that most of the signal is reflected back
by the ground via. All cases show that the current flows down
to the ground plane, and a good short can be achieved over
a broad frequency range.

B. Spiral Inductor with an Air Bridge

The spiral inductor is analyzed and compared to the spectral-
domain analysis and measurement [7] for verification of our
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Fig. 3. Magnitude and phase of S11 for an infinite rnicrostrip line with a
ground via. e, = 10.0, tlickness = 0.635 nun, line width = 3.0 rum, and
via-hole dimneter = 1.22 rum.
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Fig. 4. Transmission coefficient of spiral inductor with an air bridge.
.% = 9.8, thicfmess = 0.635 mm, line width = 0.625 mm, gap width
= 0.3125 rnrn, air-bridge height = 0.3175 rmn, and air-bridge width =
0.3125 nun.

method. The rectangular air bridge is composed of two triangu-

lar cells. The lengths of the microstrip lines in the input/output
ports are set to be 24 mm to extract the scattering parameters
from the dominant-mode propagation region. This circuit is
discretized into 992 triangular facets, which is equivalent to
1313 unknown interior edges. The CPU time is approximately
4.5 min per frequency point. Figs. 4–6 demonstrate the ex-
cellent agreement in the scattering parameters between this
analysis and the measurement.
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Fig. 5. Reflectioncoefficient(from port 1) of spiral inductor with an air
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Fig. 6. Reflection coefficient (from port 2) of spiral inductor with an air
bridge.

C. Vias in Filter Design

Multiple via holes can be applied to microstrip filter design.
As an example, the bandpass filter configuration (shown in [21,
Fig. 7]) is considered. Two mitered-bend lines with rectangular
pads are connected to the main transmission line. Each pad is
grounded by a circular via hole with a 100-#m diameter. A

triangular mesh is also plotted in Fig. 7. Eighteen triangular
cells are used to expand the vertical current for each via
hole. The total unknowns are 555, and the CPU time is about
39.2 s per frequency point. Compzu_ed to 444 slfreq for the
Microwave Explorer 1.11 on HP730 [21], our algorithm is
much more efficient. The simulated results are shown for
lossless layers, perfectly conducting microstrip lines in Fig
8. The resonant frequency is predicted very well at 13.5 GHz
[21].
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Fig. 8. Reflection and transmission coefficients of bandpass filter with two
via-hole grounds.

D. Grounded Coplanar Waveguide Circuit

The next two examples are grounded coplanar waveguide
(GCPW) test circuits proposed, fabricated, and tested by
Hughes Aircraft Company. These circuits are among those that
Hughes uses to interconnect various MMIC chips in multichip
modules (MCM’s) such as microwave transmitheceive (T/R)
modules. The first example is a back-to-back, abrupt GCPW
to microstrip transition circuit pair shown in Fig. 9. SO-Q line-
impedance circuits were fabricated on 1 in by 0.5 in by 25-roil
thick alumina substrates with a thick-film process. 5-roil gaps
separate the 10-mil wide center conductor from the ground
return strips. The CPW ground return strips were connected to
the bottom-side ground plane with a 6-nnil diameter conducting
vias located at the centerline of the strips and spaced every
50 roils. To simulate the appropriate CPW mode propagation,
three series delta-gap sources are put at the ends of the
outer ground strips with amplitude – 1 and the center signal
conductor with amplitude 1, respectivel~y. That is, a source is
connected at the input port (center line), while two out-of-
phase sources are excited from top and bottom strips at the
same time. The circular vias, small colmpared to the guided
wavelength, are approximated by rectangular vias constructed
by two triangular cells because of the simpler discretization.
Fig. 10 shows the transmission coefficient for an abrupt

290 I

4 F
370
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10 17 50 23.

unit 0.001 inch, via diarnetec 0.006 inch

25

-

Fig.9. GCPW circuit with microstrip-abrnpt transition
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Fig.10.Comparison of the transmission coefficient for Fig. 9 without vias.

transition without vias. Substantial radiation from the “mi-
crostrip” center conductor is expected since the underside
ground plane is no longer connected to the CPW return strips.
Two dips of S21 at 6.9 GHz and 13.6 GHz are predicted
very well. Fig. 11 shows the amplitude of the reflection and
transmission coefficients for the GCPW circuit. It can be seen
that the via effects help the broadband transmission of the
signals from port 1 to port 2. The calculated data shows
good agreement with the measured data at higher frequencies,
except for the shift in resonant frequent y. The lower resonance

at about 4 GHz is missed in the calculation. The reason
for this error is that this analysis assumes infinite ground
planes and does not take into account the finite half-inch-width
fabricated circuits. The assumption of infinite substrates is only
an approximation for comparison with the fabrication circuits,
especially at lower frequencies. There is significant radiation
loss from the finite board. This loss can be verified from the
sum of reflected and transmitted power as demonstrated in
Fig. 12.

Another GCPW circuit is shown in Fig. 13. This circuit
has similar dimensions and via parameters as the previous
example, except this circuit has right-angle-bend transitions
in place of a step discontinuity. The simulation results and
measured data are shown in Fig. 14. Because of the very low
reflection, the associated numerical errors make it difficult
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to simulate accurately. The resonant behavior between the
measured and predicted results agree well. In addition, two
dips of ISzl I shown near 16 GHz are predicted by this analysis.
Again, there is severe radiation loss from the edges of the
board as shown in Fig 15. Nevertheless, this analysis yields
pretty good simulation results for both cases in the frequency

range of interest, 7–15 GHz. Commercial software based
upon the finite-element method (FEM) suffers from very slow

convergence because it treats the designed CPW modesof the

GCPW circuits as higher order modes. Moreover, either FEM
or FDTD analysis needs to grid the entire volume, including
the open space in the air region, so huge computer resources,
such as parallel computing processors and large memory
usage, are necess~. This moment-method algorithm meshes
only conductors, and therefore, a more efficient analysis can
be achieved.

1 Er’=9.8 ‘

Fig. 13. GCPW circuit with right-angle-bend transition.
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IV. CONCLUSION

In this analysis, the combined MPIIE-EFIE technique is

developed to model 3-D printed circuits of arbitrary shape

in a multilayered medium. With the triangular patch function

and vertical volume current basis with a triangular cross

section, arbitrarily shaped microstrips and via holes can be

analyzed accurately and efficiently. All circuit parameters,

including the radiation and surface-wave characteristics, can

be investigated from the current distribution which resulted

from a moment-method analysis. Several examples with via-

hole and air-bridge transitions in multilayered structures were

presented. Good agreement was found between experiments

and published results. The presented analysis may find many

applications in MMIC-CAD designs.

APPENDIX

The dyadic Green’s function used in (7)–(9) has been

formulated for multilayered media in [16]. To show the special
treatment of analytic integration over 2 axis for the evaluation
of matrix elements due to vertical current basis, the Green’s
function is reduced, for simplicity, to the expressions for a

single-layered substrate. They are listed as follows:

1~Jo(kpp)kp dkp (15)

with the following parameters:

~. = dk; – k;

-J==
D, = CYOLL. tanh (~ld) + V1

Dm = ~1 tanh (~ld) + ~oer

D: = ~lur tanh (-yId) + VO

p =/(z’ –$s)2 -t (!J –!JS)2

where p is the radial distance, and kp is the spectral variable.
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