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Abstract— In recent years, introduction of an alternative en-
ergy source such as solar energy is expected. However, insolation
is not constant and output of photovoltaic (PV) system is
influenced by meteorological conditions. In order to predict the
power output for PV system as accurate as possible, it requires
method of insolation estimation. In this paper, the authors take
the insolation of each month into consideration, and confirm
the validity of using neural network to predict one-day-ahead
24 hours insolation by computer simulations. The proposed
method in this paper does not require complicated calculation
and mathematical model with only meteorological data.

Index Terms— neural network, 24 hours ahead forecasting,
power output for PV system, insolation forecasting.

I. INTRODUCTION

IN recent years, introduction of an alternative energy source
such as solar energy is expected. Solar energy is well-

known as clean energy because of no CO2 emission. There-
fore, photovoltaic (PV) system are rapidly gaining acceptance
as one of the best solutions for the alternative energy source.
However, insolation is not constant and the output of PV
system is influenced by insolation and weather conditions.
Using storage battery is one feasible measure to stabilize
power output of PV systems. However, it requires additional
costs and results in additional waste of used storage batteries.
From the point of view to improve the control performance of
power systems, there should be an estimation of output of PV
system as accurate as possible. Therefore, a good insolation
prediction method is required. Although the technique to fore-
cast the generating power of PV system based on insolation
prediction is regarded as an effective method in practical
applications, it requires to solve differential equations by using
large meteorological data. Then, the implementation of these
techniques results in higher cost.
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To overcome these problems, it requires that forecasting
technique is inexpensive and easy-to-use. Application of NN is
known as a convenient technique for forecasting. It is possible
to forecast insolation with only meteorological data. Most of
the papers have reported application of feed-forward neural
network (FFNN) for insolation forecasting [1-3]. However,
it is difficult to forecast insolation by using FFNN. This
paper proposes the power output forecasting of PV system
based on insolation forecasting at 24-hour-ahead by using
three different NN model. Selected model are FFNN, radial
basis function neural network (RBFNN), and recurrent neural
network (RNN). RBFNN is chosen for its structural simplicity
and universal approximation property [4,5]. Since RNN is
known as a good tool for time-series data forecasting [6,7],
RNN is chosen in this paper.

A great deal of effort has been made on solar insolation and
generating power forecasting method by using NN. Neverthe-
less, the author should like to explore a further possibility,
which to the best of our knowledge has never been examined.
In any ather paper, what seems to be lacking is performance
comparison for insolation prediction of several types NN.
There is a valid argument. Since the insolation fluctuates
depending on weather conditions, so that the the forecast result
of using NN is usually case-by-case.

The proposed technique for application of NN is trained by
only weather data and tested for the target term. The power
output of PV system is calculated by the forecasted insolation
data. The validity of the proposed method is confirmed by
comparing the prediction abilities of above mentioned NN on
the computer simulations at 24-hour-ahead. In electric com-
panies, insolation prediction is an important tool for utilizing
the hybrid power systems with the storage battery, solar cells,
wind generators, etc. For example, amount of storage battery
energy is decided by forecast data easily. These decisions
are beneficial for effective operation of hybrid power systems
and consequently their profitability, depend on the forecast
technique.

II. NEURAL NETWORK

Fig. 1 shows the flow chart of learning algorithm of NN
adopted in this paper. NN is indicated as shown in the left
of Fig. 1. For the purpose to compare the forecast results of
applying each NN, input data is based on same meteorological
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Fig. 1. Learning algorithm of NN.

data. In learning of FFNN, information transmits to one
direction between each layer. The difference between FFNN
and RBFNN is that RBFNN has radial basis function in hidden
layer. On the other hand, RNN has feedback structure that
information transmits from hidden layer to input layer in
the learning algorithm. That is the main difference between
FFNN and RNN. NN is learned by repeating these information
transmission.

In solar insolation forecasting, the meteorological data used
for learning the each NN are same data (for the period of
16 days). Forecast results are obtained by using each NN
with the above-mentioned learning algorithm and forecasting
technique. More detail structure and techniques for application
of each NN are mentioned in Sections II A, B, and C.

A. Feed-forward Neural Network

Fig. 2 shows the FFNN having l and m neurons in input
layer and hidden layer, and n neuron in output layer. These
neurons are connected with linear coupling, and x1∼xl are
input data to NN. There are connection weights between
each neuron. Output of hidden neurons are converted to
nonlinear values by the Hyperbolic tangent sigmoid-function.
That function is as follows:

f(x) =
2

1 + exp(−2x)
− 1 (1)

where, x is the input data.
Back Propagation (BP) method is adopted for learning the

NN. Generally, BP is explained as follows. To begin with,
output of hidden neuron Hm is transmitted to output neuron
On. Then, the output of output neuron is compared with target
signal Tn as shown in Fig. 2. Finally, to minimize the mean
square error margin, each connection weights and the output
value of each neuron are changed in direction of straight line
from output layer to input layer. In this paper, Levenberg-
Marquardt algorithm is adopted for updating each connection
weights of neurons [8].

The term momentum and learning coefficient are the param-
eters of NN. The term momentum promote learning speed acts
rapidly by changing each connection weights of neurons. The
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Fig. 2. Feed-forward neural network.
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Fig. 3. Radial basis function neural network.
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Fig. 4. Recurrent neural network (Elman type model).

learning coefficient is explained, this parameter is preferred to
large. However, if it is too large, network becomes unstable.
We assume that the mean square error margin of NN model
should not be unstable. The authors decide these parameters
by trial-and-error method.

B. Radial Basis Function Neural Network

Fig. 3 shows the RBFNN having l and m neurons in input
layer and hidden layer, and n neurons in output layer. Output
of hidden neurons Hm are converted by radial basis function.
The exact interpolation problem requires every input vector
to be mapped exactly on to the corresponding target vector.
Consider a mapping from a d-dimensional input space x to
a one-dimensional target space t. The data set consists of N
input vectors xp, together with corresponding target tp. The
goal is to find a function h(x) such that

h(xp) = tp, p = 1, ...N. (2)

The RBFNN approach introduces a set of N basis functions,
one for each point, which take the form φ(‖x−xp‖). Thus, the
p-th such function depends on the euclidean distance between
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x and xp. The output mapping is then taken to be a linear
combination of the basis functions

h(x) =
∑

p

wpφ(‖x − xp‖). (3)

The interpolation condition given by Eq. (3) can then be
written in matrix form as

W = Φ−1t. (4)

When the weight wp in Eq. (3) are set to the value given by Eq.
(4), the function h(x) represents a continuous differentiable
surface that passes exactly through each data point. Several
forms of basis function have been considered as for Eq. (5).

φj(xp) = exp

(
−x2

2σ2
j

)
(5)

where, σ is a parameter whose value controls the smoothness
properties of the interpolating function φ(x).

Although the learning in output neurons On of RBFNN
are adopted by BP like FFNN in this paper, hidden neurons
Hm of RBFNN are adopted by approach shown below. The
explanation shown below is summarized [4].

Training the RBFNN aims to minimize the sum-of-squares
of error function defined by Eq. (6), its minimum can be found
in terms of the solution of a linear equations Eq. (7).

E =
1

2P

∑
p

∑
k

(dpk − opk)2 (6)

ΦT ΦWT = ΦT T (7)

The formal solution of the weights are given by

W t = Φ†T (8)

where, P is pattern index, T (= dpk) is target signal, opk is
output, W is weight matrix, and Φ† is the pseudo inverse of Φ.
Thus, the weight can be found by fast, linear matrix inversion
techniques [4].

C. Recurrent Neural Network

Fig. 4 shows the RNN model of Elman type NN. Neuron
characteristic of RNN is the same as that of FFNN, and it
learned by BP. However, RNN has a Context layer. These
layer contains copy of hidden layer with time-delay lines,
and added as feedback structure. The context layer reflects
both input and output layers information to the structure of
RNN, by intervening the feedback structure by hidden layer.
In consequence, the past information is maintained to RNN
with the progress of learning. In Fig. 4, Yt is the output of the
hidden layer, and Ytn is the output of the context layer. Ytn

is the following equation:

Ytn = Yt−1 + rYt−2 + r2Yt−3 + ... + rn−1Yt−n (9)

where, r is called a residual ratio. The value of r varies
between 0 and 1.
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As a result of learning RNN, past informations are reflected
to RNN. In time-series data forecasting, it is difficult to
maintain the past information by using simply FFNN. But,
the composition of RNN that has the feedback structure is
said to be effective [6].

D. Neural Networks Design

In this paper, to compare the forecasting performance of
each NN by simulation, each learning parameters of NN, e.g.,
number of neurons, learning coefficient, and input data are
fixed. Where, the number of hidden neurons Hm are decided
to minimize the output error of NN by simulation result with
using the training data. There are some methods for obtaining
the number of hidden neurons Hm, however there is no general
solution for this problem [7]. In this paper, a trial-and-error
method has been used to determine the appropriate number
of hidden neurons Hm. Hence, number of hidden neurons
Hm are determined by using training data in advance of
the forecasting. The details of learning data are explained in
Section II E.

E. Input Data

The meteorological data of last 16 days are used for training
the NN. NN is learned by every pattern data of 24-hour-
ago and 24-hour-ahead. Solar radiation changes greatly with
seasonal change. Thus, it is difficult to forecast insolation on
the same study conditions. Therefore, correlation with NN and
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insolation data for forecasting is strengthened by using the
data of the amount of atmospheric insolation. “Atmospheric
insolation” is incoming to unit area on atmosphere outside,
namely “Atmospheric global solar radiation” [9]. As shown
in Fig. 5, atmospheric insolation changes under a constant
regularity in every year. In insolation forecasting, it becomes
effective to make time progresses learn to NN together with
atmospheric insolation. Insolation is strongly influenced by
the monthly distribution of atmospheric pressure. Because
distribution of atmospheric pressure changes by “migratory
anti-cyclone in 4-day cycle”. “migratory anti-cyclone in 4-
day cycle” is the high pressure seen in the Japanese Islands
especially in spring and autumn. If a weather chart is seen,
the low pressure and the high pressure will be located in a
line by turns, and the weather will also change periodically.
Hence, training data of NN are needed sufficiently. Therefore,
the meteorological data of last 16 days are used for training
the NN. Moreover, prediction temperature is used as training
data of NN. Since temperature is strongly influenced by
the insolation change, insolation forecasting is improved by
correlation of NN with using prediction temperature.

Just write about input data assume, Naha City, Okinawa
Prefecture in Japan is chosen as forecast area. The training
data of NN is used ground-observation data and Grid Point
Value (GPV) data that are “Japan meteorological business
support center” has issued [10]. Strictly speaking, GPV is
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Fig. 9. Observing interval of GPV.

the daily operational weather forecasting data provided by
the Numerical Prediction Division of Japan Meteorological
Agency (NPD/JMA). NPD/JMA produces many kinds of
aviation weather forecast products which are derived from
numerical weather prediction (NWP) output data. In this paper,
meso-scale NWP model (MSM) data is used for 24 hours
ahead forecasting simulation. Fig. 6 shows the GPV R1∼R4

and prediction region P1 which data are used for this paper.
Figs. 7 and 8 show the observing 18-hours interval of GPV.
The strong similarity between P1 and R4 are confirmed by
Figs. 7 and 8. Also, similarity between P1 and R1∼R4 is
confirmed. MSM data are represented by follows, and there
are not insolation data.

GPV(MSM) data: Insolation, Temperature, Atmospheric pres-
sure, Humidity, Cloud amount, Wind speed, and Rainfall.

The observing interval of input data is shown in Fig. 9,
and input data is shown in Table I. In Fig. 7 and Fig. 9, 18Z
is represented by Coordinated Universal Time (UTC). If it is
changed to Japan Standard Time (JST), it will be in 3:00 a.m.
In this paper, forecast time is started at after 3:00 a.m to 24-
hours ahead. Although lack data is excepted, even when lack
data arises at forecast time, it is using the data distributed at
past time, and it is possible to acquire the forecast value of
insolation. The determination method of input data shown in
Table I is shown in the simulation result of Section III.

III. SIMULATION RESULTS

Table II shows the parameters in learning of NN, each
parameter is fixed. The learning of NN is simulated with CPU-
Intel(R)-Celeron(R)-2.7GHz computer. The calculation time of
one-day-ahead forecasting is 20∼30 seconds. In this paper, to
compare the forecast performance of each NN by simulation,
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TABLE I

INPUT OF METEOROLOGICAL DATA.

Input (Grand-based observation)
x1 Insolation at 1∼24 hours ago
x2 Temperature at 1∼24 hour ago

Input (Calculated value)
x3 Atmospheric insolation at 1∼24 hours ago
x4 Atmospheric insolation at 1∼24 hours ahead

Input (GPV data)
x5∼x8 Relative humidity at 1∼24 hours ahead (R1∼R4)

Target signal (Grand-based observation)
T1 Insolation at 1∼24 hours ahead
T2 Temperature at 1∼24 hours ahead

TABLE II

LEARNING PARAMETERS OF NN.

Number of input neurons Il 8
Number of hidden neurons Hm 16
Number of output neurons On 2

Learning coefficient 0.001
Term momentum 0.25

Learning time 1000

TABLE III

MEAN ABSOLUTE PERCENTAGE ERROR.

Pattern FFNN RBFNN RNN
Pd1 15.93% 15.16% 15.20%
Pd2 15.54% 15.90% 16.27%
Pd3 17.07% 17.09% 16.86%
Pd4 14.99% 17.21% 14.67%
Pd5 16.54% 16.33% 15.93%
Pd6 17.33% 18.90% 16.30%

each parameters of NN, e.g., number of neurons, learning
coefficient, and input data are limited. The learning time is
decided that the learning of NN should not be over-training.

The input data shown in Table I shows the input pattern
Pd4 shown below Pd1∼Pd6. However, since they are difficult
to standardize inputting the wind speed and the rainfall data
of R1∼R4 into NN, therefore, they are not inquiring.

Pd1: Insolation, Temperature, Atmospheric insolation at 24-
hour ago, and Atmospheric insolation at 24-hour ahead.

Pd2: Pd1 + Temperature for the R1∼R4.
Pd3: Pd1 + Atmospheric pressure for the R1∼R4.
Pd4: Pd1 + Humidity for the R1∼R4.
Pd5: Pd1 + Cloud amount for the R1∼R4.
Pd6: Pd1 + Temperature, Atmospheric pressure, Humidity,

and Cloud amount for the R1∼R4.

Table III shows the simulation results of insolation forecast-
ing based on the conditions of the input pattern Pd1∼Pd6, and
calculates forecast error (MAPE: mean absolute percentage
error). MAPE is represented by:

MAPE [%] =
100
N

N∑
i=1

|P i
f − P i

a|
P i

a

(10)

where, N is number of data, Pf is forecast value, P i
a is actual

value, and i is number of forecasting time.
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Fig. 10. 24 hours ahead insolation forecasting (2003/May).
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We can confirmed the validity of using GPV data, when
we compared the result of Pd1 and Pd4 in Table III. That the
forecast error is decreased by using GPV data. On the other
hand, if we compare the result of Pd4 and Pd6 in Table III,
that the forecast error is increased by using more input data.
In order that RBFNN may interpolate training data correctly,
RBFNN is greatly influenced by training data at the time of
prediction. Therefore, in order to raise prediction accuracy,
selection of more suitable data is needed.

Fig. 10 shows the results of 24-hours ahead insolation
forecasting by using input pattern Pd4 in May. As shown in
Fig. 10, it is possible to obtain good forecasting results by the
progress of effective learning in the insolation changing with
regularity.

Fig. 11 shows the calculated MAPE of insolation forecast in
each month. Since the result of maximum forecast error and
minimum error are no difference, the validity of using NN
is confirmed from results of Fig. 11. Also, forecast error of
RBFNN are larger than the result of FFNN and RNN. In order
that RBFNN may interpolate training data correctly, RBFNN
is greatly influenced by training data at the time of prediction.
Therefore, it is consider that the forecast error are minimized
by using more suitable training data.

The 14th International Conference on Intelligent System Applications to Power Systems, ISAP 2007 November 4 - 8, 2007, Kaohsiung, Taiwan

446



400 420 440 460 480 500
0.00

0.05

0.10

0.15

Time  t  [hours]

A
m

ou
nt

 o
f P

V
 g

en
er

at
io

n 
po

w
er

 P
s 

[k
W

/m
2 ]

Using RBFNN

Actual

Using FFNN

Using RNN

16 May. - 20 May., 2003, at NAHA

Fig. 12. Prediction of 24 hours ahead power output for PV system
(2003/May).

2 4 6 8 10 12
0

10

20

30

40

M
A

PE
  [

%
]

month

Jan. - Dec., 2003, at NAHA

Using RBFNN
Using FFNN

Using RNN

Fig. 13. Mean absolute prediction percentage error (Power output for PV
system).

IV. FORECASTING RESULT OF POWER OUTPUT

FOR PV SYSTEM

In this Section, the method of calculating the power gen-
eration electric power of PV system from the insolation
forecasting value obtained by NN are shown. And, the author
confirm the validity of the proposed method. In the PV system
[11], per unit area of power output Ps is represented by:

Ps = ηSI(1 − 0.005(tO + 25)) [kWm−2] (11)

where, η is the conversion efficiency of solar cell array (%),
S is the array area (m2), I is the insolation (kWm−2), tO
is the outside air temperature (◦C). If the above equation of
PV system is used, the power output of PV system can be
forecasted by using only weather data. In this paper, assume
that sum total insolation will be falling on the solar cell array,
and it does not consider the incidence angle of insolation
and solar cell array. Moreover, assume that the conversion
efficiency of solar cell array η is 15.7%, array area S is 1m2.
As shown in (11), since conversion efficiency of solar cell η
and array area S are constant. Therefore, we will can see the
power output Ps is the function of outside air temperature tO
and insolation I . In this paper, power output of PV system
is computed as forecst temperature data y2 which used in the
insolation forecasting is temperature tO .

The forecast power output result of the PV system in May

that the insolation forecast error has been improved is shown in
Fig. 12. Thus, the power output of PV system can be forecasted
from the insolation forecasting. As shown in Section III, the
MAPE of power output for PV system in each month is shown
in Fig. 13. As shown in calculated result of Fig. 13, since
there is no great difference in the MAPE of power output, the
validity of the proposal technique can be confirmed.

V. CONCLUSIONS

This paper proposed the power output forecasting for PV
system based on insolation prediction by using NN. The merit
of the proposed method is that it does not require complicated
calculations and the mathematical model with only meteoro-
logical data. At that time of insolation forecasting, it can be
possible to shorten the forecast time by using only meteoro-
logical data. Moreover, selected model are FFNN, RBFNN,
and RNN. RBFNN is chosen for its structural simplicity and
universal approximation property. Since RNN is known as
a good tool for time-series data forecasting, RNN is chosen
in this paper. Although the result are mixed in each month,
simulation results indicate that RBFNN and RNN outperform
the result of FFNN in some month. In fact, it is possible to
forecast preferred results by using only meteorological data in
short time. The validity of the proposed NN is confirmed by
one-day-ahead 24 hors forecasting simulation.
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